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Contact during exam
Name: Brynjulf Owren (93021641)
Sensur: 21.12.2009

EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Monday November 30, 2009
Time: 09:00�13:00

Aids: Category A, All printed and hand written aids allowed. All calculators allowed.

Problem 1 Given the matrix

A =
1

21
·

 −9 32 −62
−72 67 −34
−18 106 2

 .

a) Fill in µi, νi, i = 1, 2, 3 and σ3 such that the product

A =

 1/3 −2/3 µ1

2/3 −1/3 µ2

2/3 2/3 µ3

 7
3

σ3

 −3/7 6/7 −2/7
2/7 3/7 6/7
ν1 ν2 ν3


is a singular value decomposition of A.

Answer:

A =
1
21

·

 1 −2 2
2 −1 −2
2 2 1

 7
3

2

 −3 6 −2
2 3 6
6 2 −3
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b) We de�ne the set of matrices

M = {a1b
T
1 + a2b

T
2 , a1, b1, a2, b2 ∈ R3}

Determine
Ã = arg min

B∈M
‖A−B‖2

where A is the matrix de�ned above.

Answer: We note that M is precisely the set of matrices of rank at most 2. Therefore the best
approximation in ‖ · ‖2 is given as Ã = σ1u1v

T
1 + σ2u2v

T
2

Ã =
1
21

 −33 24 −50
−48 75 −46
−30 102 8



Problem 2 Let us de�ne the shift matrix S ∈ Rn×n as

S =


1

1
1

. . .

1

 (1)

the matrix with 1 on the subdiagonal and upper right corner and 0 elsewhere. The e�ect of
applying this matrix to a vector is that all components are shifted one position down and the
last component is shifted to the �rst. Clearly, S is orthogonal and so S−1 = ST and solving
problems Sx = b is trivial. Nevertheless, we shall use this linear system as a test case for
Krylov subspace methods.

a) Prove that the eigenvalues of S are the nth roots of unity, i.e.

λk = e
2ikπ

n , k = 1, . . . , n, (i =
√
−1).

Answer: Various arguments could be used here, but a simple constructive one is the following: Writing
the eigenvalue equation Sx = λx on component form, we get

λx1 = xn, xj−1 = λxj , j = 2, . . . , n

so that we get xn = λnxn. And xn = 0 would yield all other xi = 0 as well. To have an eigenvector we

therefore need λn = 1 so the eigenvalues are the nth roots of unity as given.
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b) Let v1 = e1 = [1, 0, . . . , 0]T ∈ Rn and for each m = 1, . . . , n derive explicitly the matrices
Vm and Hm from the Arnoldi algorithm, such that the columns of Vm form an orthonormal
basis for K(S, e1).

Answer: The Arnoldi algorithm can be easily computed by an induction argument. We claim that
vj = ej (a guess motivated by running the �rst step of the algorithm). True by assumption for j = 1.
Suppose vi = ei, 1 ≤ i ≤ j, we compute wj = Svj = ej+1 if j < n and wn = Sen = e1. Thus,
hij = 〈wj , vi〉 = 〈ej+1, ei〉 = 0, 1 ≤ i ≤ j < n. The algorithm now subtracts all components hijvi from
wj and this has no e�ect, we still have wj = ej+1. Then hj+1,j = ‖wj‖2 = 1 and vj+1 = wj/hj+1,j = ej+1

so the induction works. We conclude that Vm is, for m ≤ n the the n×m matrix whose �rst m rows is
the identity matrix and the last n−m rows are zeros. The matrix Hm is the upper left m×m part of
the matrix S.

c) Suppose that we use the GMRES method to solve the linear system Sx = b. We assume
that an initial approximation x0 has been chosen such that r0 = b− Sx0 = e1. Compute
all approximations xm, m = 1, . . . , n. Show how each residual rm can be expressed as
rm = pm(S)r0 for some polynomial pm(z) of degree at most m, and determine each pm(z)
for m = 1, . . . , n. Comment on why the usual convergence analysis presented in the
book and lectures fails in this case. Discuss in particular what happens in the very last
iteration (m = n).

Answer: We have β = ‖r0‖2 = 1. Note that H̄m, m < n is the upper left m+1×m submatrix of S, the
(m+1)×m-matrix with 1's on the subdiagonal. We have xm = x0+Vmy where x0 = ST (b−e1), e1 ∈ Rn,
and b was not given. Here y ∈ Rm is the vector which solved the LS problem

arg min
y∈Rm

‖βe1 − H̄my‖2, e1 ∈ Rm+1

When m < n we �nd that ‖βe1 − H̄my‖2 = 1 + yT y, so clearly the minimum is achieved for y = 0. In
other words, xm = x0 for every m = 1, . . . , n− 1. For m = n H̄m looks a little di�erent, its last column
equals e1 ∈ Rn+1. We compute

‖βe1 − H̄ny‖2 = (1− yn)2 +
n−1∑
k=1

y2
k

so the minimum must be at y = en, the nth canonical unit vector in Rn. Therefore xn = x0 + Vnen =
x0 + vn = x0 + en = ST (b− e1)+ en = ST b = S−1b since ST e1 = en. We may compute rm = b−Sxm =
b − S(x0 + Vmy) = r0 − SVmy. For m < n we have y = 0 and therefore pm(z) ≡ 1, m < n. But for
m = n, we get rn = r0 − SVnen = e1 − Sen = 0 so that pn(z) ≡ 0 would ful�ll rn = pn(S)r0, however,
we should require pn(0) = 1. What happens instead is that we get the polynomial pn(z) = 1− zn which
works because Sn = I. In the book it is assumed that the eigenvalues of the matrix (S) can be located in
an ellipsis which is separated from the origin, this can not be done with the our S since the eigenvalues
are uniformly distributed on the unit circle. If we try to adapt the strategy from the book to our case
anyway, we would consider

min
p∈P̃m

max
z∈S1

|p(z)|

where P̃m is the set of polynomials of degree at most m taking the value 1 at z = 0, and S1 is the unit
circle. But by the maximum principle, we know that the maximum value over the closed unit disk of
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such polynomials must be attained on the unit circle so that the inner maximum above must be at least
1, and decrease of the residual cannot be achieved. In fact, the only polynomial that takes the max
value 1 is pm(z) ≡ 1. What happens when m = n? Still, no polynomials can have smaller max value on
the unit circle than 1, however everything is lost in the estimate

min
p∈P̃n

max
λ∈σ(S)

|p(λ)| ≤ min
p∈P̃n

max
z∈S1

|p(z)|

since the spectrum of S exactly coincides with the zeros of pn(z) = 1− zn, the continuous max is in fact
equal to 2.

d) What happens if we replace GMRES by the full orthogonalization method (FOM).

Answer: FOM counts on computing H−1
m (βe1), but Hm is singular so the method breaks down in the

�rst step.

Problem 3 We now consider the matrix A = I + θS, |θ| < 1, where S is the shift matrix
de�ned by (1). You may need the result in the appendix (see below) for this problem.

a) Argue that there exists a diagonal matrix Λ = Λ(θ) ∈ Cn×n and a unitary matrix
X ∈ Cn×n, not depending on θ, such that A = XΛXH .

Answer: S is unitary (orthogonal) and therefore normal and unitarily diagonalizable. We therefore
have S = XDXH for a unitary X and a diagonal D (both X and D are complex). Then

A = I + θXDXH = X(I + θD)XH = XΛ(θ)XH , Λ = I + θD.

b) We look at solving the equation Ax = b, again by GMRES. Derive an estimate for the
convergence of the residual after m iterations of the form

‖rm‖2 ≤ ε(m)(θ) ‖r0‖2, (2)

that is, determine ε(m)(θ).

Answer: We know from the previous question that A = XΛXH with XHX = I so that the condition
number κ2(X) = 1. Furthermore, we shall need the fact that all the eigenvalues of A are located on
the circle C(1, θ) which is easily seen from the �rst question in the previous problem and the fact that
σ(I + θS) = 1 + θσ(S). As in Proposition 6.32 in Saad, we realize that

‖rm‖2 ≤ ε(m)‖r0‖2

Here ε(m) could be taken as

min
p∈P̃m

max
λ∈σ(A)

|p(λ)| ≤ min
p∈P̃m

max
z∈C(1,θ)

|p(z)| =: ε(m)

We now invoke Zarantonello's lemma as given in appendix, to conclude that

ε(m) = θm.
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c) Suppose we us a preconditioner, B−1 = I − θS and consider the system

B−1Ax = B−1b

Find the corresponding convergence estimate as in (2) obtained by replacing A by B−1A.

Answer: We compute B−1A = (I − θS)(I + θS) = I − θ2S2. The eigenvalues of this matrix are of
the form λk = 1− θ2 exp(4ikπ/n), k = 1, . . . , n, so they are located on the circle C(1, θ2), and it follows
that we can take

ε(m) = θ2m

Problem 4 Given an arbitrary 2× 2 real symmetric matrix written in the form

A =

[
w + z ε

ε z

]
.

a) Perform the following shifted QR step: A− zI = QR, Ā = RQ + zI. Show that

Ā =

[
w̄ + z̄ ε̄

ε̄ z̄

]
, z̄ = z − ε2w

w2 + ε2
, w̄ = w + 2

ε2w

w2 + ε2
, ε̄ =

ε3

w2 + ε2
.

Answer:

A− zI =
[

z ε
ε 0

]
=

[
w/α ε/α
ε/α −w/α

]
·
[

α εw/α
0 ε2/α

]
, α =

√
w2 + ε2

So we form

RQ + zI =
[

w + z + ε2w/α2 ε3/α2

ε3/α2 z − ε2w/α2

]
Then

z̄ = z − ε2w/α2, w̄ + z̄ = w̄ + z − ε2w/α2 = w + z + ε2w/α2

so that w̄ = w + 2ε2w/α2 etc.

b) What does the result in the previous question tell you about the convergence of the
QR-iteration for this type of matrix? What happens to the convergence rate if w ≤ ε?
Draw the Gerschgorin disks for A in the case that w = ε and comment on how this result
compare to what you know in general about the convergence of the QR-iteration.

Answer: The interesting quantity is ε̄ = O(ε3) unless w is small. So generally we have cubic conver-
gence.

If |w| ≤ ε then ε/2 ≤ ε̄ ≤ ε so the convergence in
this �rst step is slow. However, cubic convergence will
be recovered at some point. The only possibility that
the eigenvalues coincide is that ε = w = 0 and then
A = zI so convergence is immediate. Since the matrix
is symmetric, the eigenvalues are real and so they are
located between z − ε and z + 2ε.

z z+!
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Appendix. A version of Zarantonello's lemma (Saad, Lemma 6.26). Let C(c, ρ) be a circle
centered at c with radius ρ where ρ < |c|. Then

min
p∈Pm, p(0)=1

max
z∈C(c,ρ)

|p(z)| =
(

ρ

|c|

)m


