EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Thursday December 9, 2010
Time: 09:00-13:00
Aids: Code C,. The following printed/ hand written aids are allowed.

- Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
- Trefethen and Bau, Numerical linear algebra or Notes from the same book found on the course home page
- Golub and Van Loan, Matrix Computations or Note from the same book found on the course home page
- Own lecture notes from the course

Problem 1 A matrix $A \in \mathbb{Z}^{4 \times 4}$ is being QR-factorized. After one Householder transformation using the matrix Q_{1} generated by v, one has found

$$
A_{2}=Q_{1} A=7 \cdot\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 \\
0 & -\frac{3}{5} & \frac{3}{5} & \frac{1}{5} \\
0 & -\frac{4}{5} & \frac{4}{5} & -\frac{7}{5}
\end{array}\right], \quad v=\frac{w}{\|w\|_{2}}, \quad w=\left[\begin{array}{r}
-10 \\
0 \\
-2 \\
-6
\end{array}\right]
$$

a) Determine the original matrix A. You can use that $2 \frac{w^{T} A_{2}}{w^{T} w}=\left[-1, \frac{8}{5},-\frac{8}{5}, \frac{9}{5}\right]$. Hint to check the answer: A has only integer elements.
b) Determine the upper triangular matrix R such that $A=Q R$, use Householder transformations and give also the vectors v_{2} and v_{3} which generate Q_{2} and Q_{3}. You are not to compute Q.
Hint to check the answer: All the elements in R are integers divisible by 7 .

Problem 2 We shall apply a projection method to approximate the solution of the linear system

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}
$$

For this purpose, we use a search space \mathcal{K} and a constraint space \mathcal{L}, both of dimension $m \leq n$. For a given initial value x_{0} we seek an approximation $\tilde{x} \in x_{0}+\mathcal{K}$ such that $\tilde{r} \perp \mathcal{L}$, i.e. $\tilde{r}=b-A \tilde{x}$ is orthogonal to all vectors in \mathcal{L}.
a) Suppose that we can write $\mathcal{L}=B \mathcal{K}$ for a nonsingular $n \times n$ matrix B. Show that if $(A x, B x)>0$ for all $x \in \mathbb{R}^{n}$, then this method is well defined, i.e. there exists a unique $\tilde{x} \in x_{0}+\mathcal{K}$ such that $\tilde{r} \perp \mathcal{L}$.
b) Assume now that B is chosen such that $C:=B A^{-1}$ is symmetric positive definite. Show that the result \tilde{x} will satisfy

$$
\|b-A \tilde{x}\|_{C}=\min _{y \in x_{0}+\mathcal{K}}\|b-A y\|_{C}
$$

where $\|\cdot\|_{C}$ is the vector norm on \mathbb{R}^{n} defined as $\|v\|_{C}=\sqrt{v^{T} C v}$.
c) Let us now assume that A is symmetric so that the eigenvalues are real. Let $\lambda_{\min }$ and $\lambda_{\max }$ be the smallest and largest eigenvalue of A respectively. We also set $B=(1-\mu) I+\mu A$. Show that the assumptions of the previous question are satisfied such that $C=B A^{-1}$ is SPD if and only if

$$
\mu<\frac{1}{1-\lambda_{\min }} \quad \text { if } \lambda_{\min }<1 \quad \text { and } \quad \mu>\frac{1}{1-\lambda_{\max }} \quad \text { if } \lambda_{\max }>1 .
$$

By this we mean that the first inequality can be ignored if $\lambda_{\text {min }} \geq 1$, and the second inequality can be ignored if $\lambda_{\max } \leq 1$.

Problem 3 In this problem, we shall study in some detail the properties of splitting methods as preconditioners.
a) Let A be a nonsingular square matrix. We begin by assuming that we want to approximate the solution to the equation $A \mathrm{e}=r$ by using k iterations with a splitting method, and that we set the initial value to zero, i.e. $e^{(0)}=0$. Assume first a general splitting $A=D-N, D$ invertible, and an iteration of the form

$$
\mathrm{e}^{(k+1)}=G \mathrm{e}^{(k)}+\bar{r}, \quad G=D^{-1} N, \quad \bar{r}=D^{-1} r
$$

Show that one has $\mathrm{e}^{(k)}=(I-G)^{-1}\left(I-G^{k}\right) \bar{r}$, and if the corresponding preconditioned system is $\tilde{A} x=M^{-1} A x=M^{-1} b$ then one has

$$
\tilde{A}=M^{-1} A=(I-G)^{-1}\left(I-G^{k}\right)(I-G) .
$$

b) Assume in the rest of this problem that A is symmetric positive definite (SPD) of the form $A=\alpha I-N, N^{T}=N, \alpha>\frac{1}{2} \lambda_{\max }$, where $\lambda_{\max }=\rho(A)$ is the largest eigenvalue of A. Let $D=\alpha I$. Show that the preconditioner M from the question above then will also be SPD
c) Suppose as before that A is SPD, and that the smallest and largest eigenvalue of A are $\lambda_{\min }$ and $\lambda_{\max }$ respectively. We choose the splitting parameter $\alpha=\frac{1}{2}\left(\lambda_{\min }+\lambda_{\max }\right)$ such that the preconditioner is SPD. Suppose that we use k iterations of the splitting method where k is an odd integer. Show that under these circumstances one has

$$
\kappa_{2}(\tilde{A})=\frac{1+\left(\frac{\kappa-1}{\kappa+1}\right)^{k}}{1-\left(\frac{\kappa-1}{\kappa+1}\right)^{k}}
$$

where $\kappa=\kappa_{2}(A)$ is the condition number of A.
Comment on the result.

Problem 4

a) Show that the Frobenius norm of an $n \times n$ matrix can be written as

$$
\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are the singular values of A.
b) Suppose that A is a 202×202 matrix with $\|A\|_{2}=100$ and $\|A\|_{F}=101$. Find from this the largest possible lower bound for $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.

Appendix. Some useful formulas

1. For all $n \times n$ matrices C with elements $c_{i j}$ and eigenvalues λ_{i} one has

$$
\operatorname{Tr}(C)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

2. The condition number of a matrix A is given by the formula $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. In particular, using the p-norm, one writes $\kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$
