Norwegian University of Science and Technology

Contact during exam
Name: Bawfeh Kingsley Kometa (office: 73591975, cell: 93624 483)
Results available: 06.01.2011

EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Thursday December 9, 2010
Time: 09:00-13:00
Aids: Code C,. The following printed/ hand written aids are allowed.

- Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
- Trefethen and Bau, Numerical linear algebra or Notes from the same book found on the course home page
- Golub and Van Loan, Matrix Computations or Note from the same book found on the course home page
- Own lecture notes from the course

Problem 1 A matrix $A \in \mathbb{Z}^{4 \times 4}$ is being QR-factorized. After one Householder transformation using the matrix Q_{1} generated by v, one has found

$$
A_{2}=Q_{1} A=7 \cdot\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 \\
0 & -\frac{3}{5} & \frac{3}{5} & \frac{1}{5} \\
0 & -\frac{4}{5} & \frac{4}{5} & -\frac{7}{5}
\end{array}\right], \quad v=\frac{w}{\|w\|_{2}}, \quad w=\left[\begin{array}{r}
-10 \\
0 \\
-2 \\
-6
\end{array}\right]
$$

a) Determine the original matrix A. You can use that $2 \frac{w^{T} A_{2}}{w^{T} w}=\left[-1, \frac{8}{5},-\frac{8}{5}, \frac{9}{5}\right]$. Hint to check the answer: A has only integer elements.
Answer: Use the fact that Householder transformations are their own inverse, so $A=Q_{1}^{-1} A_{2}=Q_{1} A_{2}$. We need to find $\left(I-2 v v^{T}\right) A_{2}$

$$
=A_{2}-2 w \frac{w^{T} A_{2}}{w^{T} w}=7 \cdot\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 \\
0 & -\frac{3}{5} & \frac{3}{5} & \frac{1}{5} \\
0 & -\frac{4}{5} & \frac{4}{5} & -\frac{7}{5}
\end{array}\right]-\left[\begin{array}{r}
-10 \\
0 \\
-2 \\
-6
\end{array}\right] \cdot\left[-1, \frac{8}{5},-\frac{8}{5}, \frac{9}{5}\right]=\left[\begin{array}{rrrr}
-3 & 9 & -9 & 11 \\
0 & 0 & 7 & -7 \\
-2 & -1 & 1 & 5 \\
-6 & 4 & -4 & 1
\end{array}\right]
$$

b) Determine the upper triangular matrix R such that $A=Q R$, use Householder transformations and give also the vectors v_{2} and v_{3} which generate Q_{2} and Q_{3}. You are not to compute Q.
Hint to check the answer: All the elements in R are integers divisible by 7 .
Answer: We begin by setting $x=A_{2}(2: 4,2)=7 \cdot[0,-3 / 5,-4 / 5]^{T}$ and use the formula $v=w /\|w\|_{2}$ where $w=x+\operatorname{sign}\left(x_{1}\right)\|x\|$. Since $\|x\|_{2}=7$ we get $w=7 \cdot[1,-3 / 5,-4 / 5]^{T}:=7 \cdot \tilde{w}$, such that $\tilde{w}^{T} \tilde{w}=2$. Let $\tilde{A}_{2}=A_{2}(2: 4,2: 4)$, we just change this part of A_{2} to find A_{3}. One has $\tilde{Q}_{2} \tilde{A}_{2}=\left(I-2 v v^{T}\right) \tilde{A}_{2}$

$$
\tilde{A}_{3}=\tilde{A}_{2}-2 \frac{w w^{T}}{w^{T} w} \tilde{A}_{2}=\tilde{A}_{2}-2 \tilde{w} \frac{\tilde{w}^{T} \tilde{A}_{2}}{\tilde{w}^{T} \tilde{w}}=\tilde{A}_{2}-\tilde{w} \tilde{w}^{T} \tilde{A}_{2}=\tilde{A}_{2}-7 \tilde{w} \cdot[1,0,0]
$$

Thus

$$
\tilde{A}_{3}=7 \cdot\left[\begin{array}{rrr}
0 & 1 & -1 \\
-\frac{3}{5} & \frac{3}{5} & \frac{1}{5} \\
-\frac{4}{5} & \frac{4}{5} & -\frac{7}{5}
\end{array}\right]-7 \cdot\left[\begin{array}{r}
1 \\
-\frac{3}{5} \\
-\frac{4}{5}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=7 \cdot\left[\begin{array}{rrr}
-1 & 1 & -1 \\
0 & \frac{3}{5} & \frac{1}{5} \\
0 & \frac{4}{5} & -\frac{7}{5}
\end{array}\right] .
$$

One can use for the Householder transformation, $v_{2}=\sqrt{1 / 2}[1,-3 / 5,-4 / 5]^{T}$.
We proceed in the same way and define $\tilde{\tilde{A}}_{3}=\tilde{A}_{3}(2: 3,2: 3)$. Set $x=7 \cdot[3 / 5,4 / 5]^{T}$, and find $\|x\|_{2}=7$, and thus $w=7 \cdot[3 / 5+1,4 / 5]^{T}=28 \cdot[2 / 5,1 / 5]^{T}=28 \cdot \tilde{w}$, where $\tilde{w}^{T} \tilde{w}=1 / 5$. The same type of computation as above yields

$$
\tilde{A}_{4}=7 \cdot\left[\begin{array}{rr}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

We substitute the matrices back into each other to obtain

$$
R=7 \cdot\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & -1 & 1 & -1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

One may define $v_{3}=\sqrt{1 / 5} \cdot[2,1]^{T}$.

Problem 2 We shall apply a projection method to approximate the solution of the linear system

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}
$$

For this purpose, we use a search space \mathcal{K} and a constraint space \mathcal{L}, both of dimension $m \leq n$. For a given initial value x_{0} we seek an approximation $\tilde{x} \in x_{0}+\mathcal{K}$ such that $\tilde{r} \perp \mathcal{L}$, i.e. $\tilde{r}=b-A \tilde{x}$ is orthogonal to all vectors in \mathcal{L}.
a) Suppose that we can write $\mathcal{L}=B \mathcal{K}$ for a nonsingular $n \times n$ matrix B. Show that if ($A x, B x)>0$ for all $x \in \mathbb{R}^{n}$, then this method is well defined, i.e. there exists a unique $\tilde{x} \in x_{0}+\mathcal{K}$ such that $\tilde{r} \perp \mathcal{L}$.

Answer: We introduce a basis for \mathcal{K} as the columns of the $n \times m$ matrix, $V_{m}=\left[v_{1}|\cdots| v_{m}\right] \in \mathbb{R}^{n \times n}$. The vectors $w_{j}=B v_{j}, j=1, \ldots, m$ then form a linearly independent set in \mathcal{L}, which we can take as a basis, we set $W_{m}=\left[w_{1}|\cdots| w_{m}\right] \in \mathbb{R}^{n \times n}$. Any vector \tilde{x} in $x_{0}+\mathcal{K}$ can be written in the form $\tilde{x}=x_{0}+V_{m} y, y \in \mathbb{R}^{m}$. We have

$$
\tilde{r}=b-A \tilde{x}=b-A x_{0}-A V_{m} y=r_{0}-A V_{m} y .
$$

We require that $\tilde{r} \perp \mathcal{L}$ which is equivalent to $w_{j} \perp \tilde{r}, r=1, \ldots, m$ or $W_{m}^{T} \tilde{r}=0$. This yields

$$
\left(B V_{m}\right)^{T}\left(r_{0}-A V_{m} y\right)=0 \quad \Leftrightarrow \quad\left(V_{m}^{T} B^{T} A V_{m}\right) y=V_{m}^{T} B^{T} r_{0}
$$

A unique solution exists if and only if $P=V_{m}^{T} B^{T} A V_{m} \in \mathbb{R}^{m \times m}$ is nonsingular. A sufficient condition for this is that P is positive definite, i.e. $z^{T} P z>0 \forall z \in \mathbb{R}^{m}$. We show that it is exactly that under the assumption $(A x, B x)>0$. We have

$$
z^{T} P z=z^{T} V_{m}^{T} B^{T} A V_{m} z=(B x)^{T}(A x)=(A x, B x)>0, \quad x=V_{m} z
$$

b) Assume now that B is chosen such that $C:=B A^{-1}$ is symmetric positive definite. Show that the result \tilde{x} will satisfy

$$
\|b-A \tilde{x}\|_{C}=\min _{y \in x_{0}+\mathcal{K}}\|b-A y\|_{C}
$$

where $\|\cdot\|_{C}$ is the vector norm on \mathbb{R}^{n} defined as $\|v\|_{C}=\sqrt{v^{T} C v}$.
Answer: First a minor comment. That such a B exists we can see for instance by taking the candidates $B=I$ or $B=A$ where we have assumed that A is nonsingular. Let us perturb the given candidate, by setting $y=\tilde{x}+\delta, \delta \in \mathcal{K}$ and then study $\|b-A y\|_{C}$

$$
\|b-A y\|_{C}^{2}=\|b-A \tilde{x}-A \delta\|_{C}^{2}=(\tilde{r}-A \delta)^{T} C(\tilde{r}-A \delta)=\|\tilde{r}\|_{C}^{2}+\|A \delta\|_{C}^{2}-2 \tilde{r}^{T} B A^{-1} A \delta .
$$

We notice that the last term vanishes because $\tilde{r} \perp B \delta$ siden $B \delta \in \mathcal{L}$. Therefore

$$
\|b-A y\|_{C} \geq\|\tilde{r}\|_{C}
$$

and equality requires $A \delta=0$ which again calls for $\delta=0$ i.e. $y=\tilde{x}$, the minimum is unique.
c) Let us now assume that A is symmetric so that the eigenvalues are real. Let $\lambda_{\min }$ and $\lambda_{\max }$ be the smallest and largest eigenvalue of A respectively. We also set $B=(1-\mu) I+\mu A$. Show that the assumptions of the previous question are satisfied such that $C=B A^{-1}$ is SPD if and only if

$$
\mu<\frac{1}{1-\lambda_{\min }} \quad \text { if } \lambda_{\min }<1 \quad \text { and } \quad \mu>\frac{1}{1-\lambda_{\max }} \quad \text { if } \lambda_{\max }>1
$$

By this we mean that the first inequality can be ignored if $\lambda_{\text {min }} \geq 1$, and the second inequality can be ignored if $\lambda_{\max } \leq 1$.
Answer: We now find that

$$
C=B A^{-1}=((1-\mu) I+\mu A) A^{-1}=(1-\mu) A^{-1}+\mu I
$$

C is obviously symmetric if A is symmetric. Considering the eigenvalues of C we have

$$
\lambda(C)=\frac{1-\mu}{\lambda(A)}+\mu
$$

and we need only demand that they are positive. For those eigenvalues of A which are larger than 1 , it is the biggest of them, namely $\lambda_{\max }$ which determines the most restrictive condition. For those less than 1 , it is $\lambda_{\text {min }}$ which determines the condition.

Problem 3 In this problem, we shall study in some detail the properties of splitting methods as preconditioners.
a) Let A be a nonsingular square matrix. We begin by assuming that we want to approximate the solution to the equation $A \mathrm{e}=r$ by using k iterations with a splitting method, and that we set the initial value to zero, i.e. $e^{(0)}=0$. Assume first a general splitting $A=D-N, D$ invertible, and an iteration of the form

$$
\mathrm{e}^{(k+1)}=G \mathrm{e}^{(k)}+\bar{r}, \quad G=D^{-1} N, \quad \bar{r}=D^{-1} r
$$

Show that one has $\mathrm{e}^{(k)}=(I-G)^{-1}\left(I-G^{k}\right) \bar{r}$, and if the corresponding preconditioned system is $\tilde{A} x=M^{-1} A x=M^{-1} b$ then one has

$$
\tilde{A}=M^{-1} A=(I-G)^{-1}\left(I-G^{k}\right)(I-G) .
$$

Answer: We can prove this by induction. Tha $\mathrm{e}^{(1)}=\bar{r}$ can be seen directly from the iteration formula with $k=0$, since $\mathrm{e}^{(0)}=0$. If the formula is correct up to $k-1$ we can find $\mathrm{e}^{(k)}$ by
$\mathrm{e}^{(k)}=G \mathrm{e}^{(k-1)}+\bar{r}=\left(I+G(I-G)^{-1}\left(I-G^{k-1}\right)\right) \bar{r}=(I-G)^{-1}\left(I-G+G\left(I-G^{k-1}\right)\right) \bar{r}=(I-G)^{-1}\left(I-G^{k}\right) \bar{r}$
To find the expression for \tilde{A} we need to substitute $\bar{r}=D^{-1} r$ and use that $A=D(I-G)$.

$$
\tilde{A}=M^{-1} \cdot A=(I-G)^{-1}\left(I-G^{k}\right) D^{-1} \cdot(D-N)=(I-G)^{-1}\left(I-G^{k}\right)(I-G)
$$

b) Assume in the rest of this problem that A is symmetric positive definite (SPD) of the form $A=\alpha I-N, N^{T}=N, \alpha>\frac{1}{2} \lambda_{\max }$, where $\lambda_{\max }=\rho(A)$ is the largest eigenvalue of A. Let $D=\alpha I$. Show that the preconditioner M from the question above then will also be SPD
Answer: We have $M^{-1}=(I-G)^{-1}\left(I-G^{k}\right) D^{-1}=\frac{1}{\alpha}(I-G)^{-1}\left(I-G^{k}\right)$ where $G=\frac{1}{\alpha} N$ is symmetric. Therefore both $(I-G)^{-1}$ and $I-G^{k}$ are symmetric and we have $M^{-T}=\left(I-G^{k}\right)(I-G)^{-1}=$ $(I-G)^{-1}\left(I-G^{k}\right)=M^{-1}$, so M^{-1} (and thus $\left.M\right)$ is symmetric.
Now $\lambda(G)=1-\frac{\lambda(A)}{\alpha}$ such that

$$
\lambda\left(M^{-1}\right)=\frac{1}{\alpha}(1-\lambda(G))^{-1}\left(1-\lambda(G)^{k}\right)=\frac{1}{\alpha} \frac{\alpha}{\lambda(A)}\left(1-\left(1-\frac{\lambda(A)}{\alpha}\right)^{k}\right)
$$

So $\lambda\left(M^{-1}\right)>0$ if $1-\left(1-\frac{\lambda(A)}{\alpha}\right)^{k}>0$. Since $\alpha>\frac{1}{2} \lambda_{\max }$ we must have $-1<1-\frac{\lambda(A)}{\alpha}<1$ for all eigenvalues of A, and therefore $-1<\left(1-\frac{\lambda(A)}{\alpha}\right)^{k}<1$. It follows that $1-\left(1-\frac{\lambda(A)}{\alpha}\right)^{k}>0$ and therefore $\lambda\left(M^{-1}\right)>0$, so M^{-1} (and thus M) is SPD.
c) Suppose as before that A is SPD, and that the smallest and largest eigenvalue of A are $\lambda_{\min }$ and $\lambda_{\text {max }}$ respectively. We choose the splitting parameter $\alpha=\frac{1}{2}\left(\lambda_{\min }+\lambda_{\max }\right)$ such that the preconditioner is SPD. Suppose that we use k iterations of the splitting method where k is an odd integer. Show that under these circumstances one has

$$
\kappa_{2}(\tilde{A})=\frac{1+\left(\frac{\kappa-1}{\kappa+1}\right)^{k}}{1-\left(\frac{\kappa-1}{\kappa+1}\right)^{k}}
$$

where $\kappa=\kappa_{2}(A)$ is the condition number of A.
Comment on the result.
Answer: The condition number of A is given as $\kappa=\kappa_{2}(A)=\frac{\lambda_{\max }}{\lambda_{\min }}$. Let $\tilde{\lambda} \in \sigma(\tilde{A})$. Since $\tilde{A}=$ $(I-G)^{-1}\left(I-G^{k}\right)(I-G)$ then $\tilde{\lambda} \in \sigma\left(I-G^{k}\right)$. Because $\alpha=\frac{1}{2}\left(\lambda_{\min }+\lambda_{\max }\right)$ we have

$$
\tilde{\lambda}=1-\left(1-\frac{2 \lambda}{\lambda_{\min }+\lambda_{\max }}\right)^{k}, \quad \lambda \in \sigma(A) .
$$

One can see that this expression is monotonically increasing in λ for instance by differentiating

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} \tilde{\lambda}=\frac{2 k}{\lambda_{\min }+\lambda_{\max }}\left(1-\frac{2 \lambda}{\lambda_{\min }+\lambda_{\max }}\right)^{k-1}
$$

Since k is odd, $k-1$ is even, and the expression is non-negative. Therefore the minimum is attained at $\lambda=\lambda_{\min }$ and the maximum at $\lambda=\lambda_{\max }$. We compute

$$
\kappa_{2}(\tilde{A})=\frac{\tilde{\lambda}_{\text {max }}}{\tilde{\lambda}_{\text {min }}}=\frac{1-\left(1-\frac{2 \lambda_{\text {max }}}{\lambda_{\text {min }}+\lambda_{\text {max }}}\right)^{k}}{1-\left(1-\frac{2 \lambda_{\min }}{\lambda_{\text {min }}+\lambda_{\text {max }}}\right)^{k}}=\frac{1+\left(\frac{\kappa-1}{k+1}\right)^{k}}{1-\left(\frac{\kappa-1}{\kappa+1}\right)^{k}}
$$

Problem 4

a) Show that the Frobenius norm of an $n \times n$ matrix can be written as

$$
\|A\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are the singular values of A.
Answer: The Frobenius norm of A can be written in the form

$$
\|A\|_{F}=\left(\sum_{i, j=1}^{n} a_{i j}^{2}\right)^{1 / 2}=\sqrt{\operatorname{Tr}\left(A^{T} A\right)}
$$

Then one ay just use the given information that the trace of a matrix equals the sum of its eigenvalues and that the square of the singular values of A are the eigenvalues of $A^{T} A$, the result then follows.
b) Suppose that A is a 202×202 matrix with $\|A\|_{2}=100$ and $\|A\|_{F}=101$. Find from this the largest possible lower bound for $\kappa_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}$.
Answer: Here we use the answer from the previous question. Note that $\|A\|_{2}=\sigma_{1}$ i.e. the largest singular value, whereas $\left\|A^{-1}\right\|_{2}=1 / \sigma_{n}$ i.e. the inverse of the smallest singular value, here $n=202$. One finds

$$
201=101^{2}-100^{2}=\|A\|_{F}^{2}-\|A\|_{2}^{2}=\sum_{k=2}^{202} \sigma_{k}^{2} \geq 201 \cdot \sigma_{202}^{2}
$$

such that $\sigma_{202} \leq 1$. Therefore

$$
\kappa_{2}(A)=\frac{\sigma_{1}}{\sigma_{202}} \geq \frac{100}{1}=100 .
$$

Appendix. Some useful formulas

1. For all $n \times n$ matrices C with elements $c_{i j}$ and eigenvalues λ_{i} one has

$$
\operatorname{Tr}(C)=\sum_{i=1}^{n} c_{i i}=\sum_{i=1}^{n} \lambda_{i}
$$

2. The condition number of a matrix A is given by the formula $\kappa(A)=\|A\|\left\|A^{-1}\right\|$. In particular, using the p-norm, one writes $\kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}$
