Department of Mathematical Sciences

Examination paper for
 TMA4205 Numerical Linear Algebra (solution)

Academic contact during examination: Håkon Marthinsen
Phone: 73593544 or 99023030 (mobile)

Examination date: 4 December 2013
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Specified, written and handwritten examination support materials are permitted. A specified, simple calculator is permitted (either Citizen SR-270X or Hewlett Packard HP30S). The permitted examination support materials are:

- Y. Saad: Iterative Methods for Sparse Linear Systems. 2nd ed. SIAM, 2003 (book or printout)
- L. N. Trefethen and D. Bau: Numerical Linear Algebra, SIAM, 1997 (book or photocopy)
- G. Golub and C. Van Loan: Matrix Computations. 3rd ed. The Johns Hopkins University Press, 1996 (book or photocopy)
- E. Rønquist: Note on The Poisson problem in \mathbb{R}^{2} : diagonalization methods (printout)
- K. Rottmann: Matematisk formelsamling
- Your own lecture notes from the course (handwritten)

Language: English
Number of pages: 9
Number pages enclosed: 0
Checked by:

Note: This solution is more detailed than what was expected at the exam.

Problem 1

a) We see that A is symmetric, so it is Hermitian $\left(A^{\mathrm{H}}=A\right)$. Then $A^{\mathrm{H}} A=A^{2}=$ $A A^{\mathrm{H}}$, which proves that A is normal.
b) Since A is Hermitian, the eigenvalues of A are real. Proof: Let $A x=\lambda x$, with $\|x\|_{2}=1$. Then

$$
\lambda=\lambda x^{\mathrm{H}} x=x^{\mathrm{H}} \lambda x=x^{\mathrm{H}} A x=x^{\mathrm{H}} A^{\mathrm{H}} x=(A x)^{\mathrm{H}} x=\bar{\lambda} x^{\mathrm{H}} x=\bar{\lambda},
$$

so λ is real.
c) Let us first find a bound for the eigenvalues of A by using Gershgorin's theorem. Each Gershgorin disc has centre in d. All elements of A are real and of the same sign as d, so the radius of each Gershgorin disc is equal to the absolute value of the sum of the elements of each row, where we do not include the element on the diagonal. All these radiuses must be smaller than

$$
2|d| \sum_{i=1}^{\infty} \frac{1}{3^{i}}=2|d|\left(\frac{1}{1-1 / 3}-1\right)=|d| .
$$

Thus, all the eigenvalues are contained inside the disc with centre d and radius $r<|d|$.
We will now prove that A does not have to be positive definite. Consider the case where $d<0$. Then all the eigenvalues λ are negative. Let $A x=\lambda x$, where $\|x\|_{2}=1$. Then

$$
x^{\mathrm{T}} A x=x^{\mathrm{T}} \lambda x=\lambda x^{\mathrm{T}} x=\lambda<0
$$

so A can not be positive definite.
d) From \mathbf{c}) we know that the Gershgorin discs do not contain zero, so A has no eigenvalue equal to zero.
Assume now that A is singular. Then $\operatorname{det} A=0$, and $\lambda=0$ is an eigenvalue of A since it is a solution of the characteristic equation $\operatorname{det}(A-\lambda \mathrm{I})=0$. This contradicts the fact that A has no eigenvalues equal to zero, so A must be nonsingular.
e) The Jacobi iteration matrix is

$$
G=\mathrm{I}-D^{-1} A
$$

where $D=d \mathrm{I}$ is the diagonal part of A. Thus,

$$
G=-\left[\begin{array}{ccccc}
0 & 1 / 3 & 1 / 9 & \cdots & 1 / 3^{n-1} \\
1 / 3 & 0 & 1 / 3 & \cdots & 1 / 3^{n-2} \\
1 / 9 & 1 / 3 & 0 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 / 3 \\
1 / 3^{n-1} & 1 / 3^{n-2} & \cdots & 1 / 3 & 0
\end{array}\right]
$$

We can use the same type of arguments as in c) to show that the eigenvalues of G are located in a disc with centre 0 and radius $r<1$. This proves that the spectral radius $\rho(G)<1$, and the Jacobi iteration converges for any initial vector.
f) From the hint, we know that L^{-1} is a lower-triangular Toeplitz matrix, so we must find $a_{1}, a_{2}, \ldots, a_{n}$ so that

$$
\mathrm{I}=L L^{-1}=d\left[\begin{array}{ccccc}
1 & & & \\
1 / 3 & 1 & & \\
1 / 9 & 1 / 3 & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
1 / 3^{n-1} & 1 / 3^{n-2} & \cdots & 1 / 3 & 1
\end{array}\right]\left[\begin{array}{ccccc}
a_{1} & & & & \\
a_{2} & a_{1} & & & \\
a_{3} & a_{2} & a_{1} & & \\
\vdots & \vdots & \ddots & \ddots & \\
a_{n} & a_{n-1} & \cdots & a_{2} & a_{1}
\end{array}\right]
$$

We calculate the first column of the product, starting with the topmost element:

$$
\begin{aligned}
1=d a_{1} & \Longrightarrow a_{1}=1 / d, \\
0=d\left(a_{1} / 3+a_{2}\right)=1 / 3+d a_{2} & \Longrightarrow a_{2}=-1 /(3 d), \\
0=d\left(a_{1} / 9+a_{2} / 3+a_{3}\right)=d a_{3} & \Longrightarrow a_{3}=0, \\
0=d\left(a_{1} / 27+a_{2} / 9+a_{3} / 3+a_{4}\right)=d a_{4} & \Longrightarrow a_{4}=0, \\
& \vdots \\
0=d a_{n} & \Longrightarrow a_{n}=0 .
\end{aligned}
$$

Thus,

$$
L^{-1}=d^{-1}\left[\begin{array}{cccc}
1 & & & \\
-1 / 3 & 1 & & \\
& \ddots & \ddots & \\
& & -1 / 3 & 1
\end{array}\right] .
$$

g) For Gauss-Seidel iteration, the iteration matrix is

$$
G=\mathrm{I}-L^{-1} A=\left[\begin{array}{cccccc}
0 & -1 / 3 & -1 / 3^{2} & -1 / 3^{3} & \ldots & -1 / 3^{n-1} \\
0 & 1 / 3^{2} & -8 / 3^{3} & -8 / 3^{4} & \ldots & -8 / 3^{n} \\
0 & 0 & 1 / 3^{2} & -8 / 3^{3} & \cdots & -8 / 3^{n-1} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 / 3^{2} & -8 / 3^{3} \\
0 & 0 & \cdots & 0 & 0 & 1 / 3^{2}
\end{array}\right]
$$

We see that G is upper-triangular, so the eigenvalues of G are the diagonal elements. Thus, the spectral radius is $\rho(G)=1 / 9$.
If we use the alternative L^{-1} mentioned in the problem text, we get $\rho(G)=$ 19/27.

Problem 2 Using centred finite differences with step length h, we discretize the 2D Helmholtz equation

$$
\begin{aligned}
-\nabla^{2} u-\alpha u=f & \text { in } \quad \Omega=(0,1) \times(0,1), \\
u=0 & \text { on } \quad \partial \Omega
\end{aligned}
$$

where α is a positive constant, and $f: \Omega \rightarrow \mathbb{R}$, and obtain

$$
\begin{equation*}
-\frac{u_{i, j+1}-2 u_{i, j}+u_{i, j-1}}{h^{2}}-\frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{h^{2}}-\alpha u_{i, j}=f_{i, j} . \tag{1}
\end{equation*}
$$

We now follow the note by E. Rønquist to construct a diagonalization method based on (1). Let U be the matrix with elements $u_{i, j}$ and G the matrix with elements $h^{2} f_{i, j}$. Let T be the tridiagonal Toeplitz matrix with 2 on the diagonal and -1 on the sub- and super-diagonals. Then (1) can be written as

$$
\begin{equation*}
T U+U T-h^{2} \alpha U=G \tag{2}
\end{equation*}
$$

The matrix T is symmetric and can be orthogonally diagonalized $T=Q \Lambda Q^{\mathrm{T}}$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We can then write (2) as

$$
Q \Lambda Q^{\mathrm{T}} U+U Q \Lambda Q^{\mathrm{T}}-h^{2} \alpha U=G
$$

or

$$
\Lambda Q^{\mathrm{T}} U Q+Q^{\mathrm{T}} U Q \Lambda-h^{2} \alpha Q^{\mathrm{T}} U Q=Q^{\mathrm{T}} G Q
$$

Define $\tilde{U}=Q^{\mathrm{T}} U Q$ with elements $\tilde{u}_{i, j}$, and $\tilde{G}=Q^{\mathrm{T}} G Q$ with elements $\tilde{g}_{i, j}$. Then

$$
\Lambda \tilde{U}+\tilde{U} \Lambda-h^{2} \alpha \tilde{U}=\tilde{G}
$$

Consider the element in position (i, j) of this equation:

$$
\lambda_{i} \tilde{u}_{i, j}+\tilde{u}_{i, j} \lambda_{j}-h^{2} \alpha \tilde{u}_{i, j}=\tilde{g}_{i, j}
$$

or

$$
\tilde{u}_{i, j}=\frac{\tilde{g}_{i, j}}{\lambda_{i}+\lambda_{j}-h^{2} \alpha} .
$$

Thus, we can write the diagonalization method as:

1. Compute $\tilde{G}=Q^{\mathrm{T}} G Q$.
2. Compute $\tilde{u}_{i, j}=\tilde{g}_{i, j} /\left(\lambda_{i}+\lambda_{j}-h^{2} \alpha\right)$.
3. Compute $U=Q \tilde{U} Q^{\mathrm{T}}$.

Note: The method fails if there exists a combination of i and j so that $h^{2} \alpha=\lambda_{i}+\lambda_{j}$.

Problem 3

a) A Krylov subspace is a subspace based on a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $v \in \mathbb{R}^{n}$. The definition is

$$
\mathcal{K}_{m}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{m-1} v\right\} \subseteq \mathbb{R}^{n}
$$

Any vector in $\mathcal{K}_{m}(A, v)$ can be written as $q_{m-1}(A) v$, where q_{m-1} is a polynomial of degree not exceeding $m-1$, and $q_{m-1}(0)=\mathrm{I}$.
The Arnoldi process is an algorithm which finds an orthonormal basis of $\mathcal{K}_{m}(A, v)$ by application of the Gram-Schmidt process. Let these basis vectors be the columns of the matrix V_{m}. The Arnoldi process also finds a Hessenberg matrix H_{m}, so that

$$
\begin{equation*}
H_{m}=V_{m}^{\mathrm{T}} A V_{m} \tag{3}
\end{equation*}
$$

b) We insert $A=\mathrm{I}+B$ into (3).

$$
H_{m}=V_{m}^{\mathrm{T}}(\mathrm{I}+B) V_{m}=V_{m}^{\mathrm{T}} V_{m}+V_{m}^{\mathrm{T}} B V_{m}=\mathrm{I}+V_{m}^{\mathrm{T}} B V_{m} .
$$

Observe that since $B^{\mathrm{T}}=-B$

$$
H_{m}^{\mathrm{T}}=\mathrm{I}-V_{m}^{\mathrm{T}} B V_{m},
$$

so $H_{m}-\mathrm{I}$, must also be skew-symmetric. However, since H_{m} is Hessenberg, $H_{m}-\mathrm{I}$ is also Hessenberg, which proves that $H_{m}-\mathrm{I}$ is tridiagonal. Thus, H_{m} must be tridiagonal and have the matrix structure

$$
H_{m}=\left[\begin{array}{cccc}
1 & -\beta_{2} & & \tag{4}\\
\beta_{2} & 1 & \ddots & \\
& \ddots & \ddots & -\beta_{m} \\
& & \beta_{m} & 1
\end{array}\right]
$$

c) The Arnoldi MGS process is

$$
\begin{aligned}
& \text { 1: } r_{0}=b-A x_{0}, \beta_{1}=\left\|r_{0}\right\|_{2}, v_{1}=r_{0} / \beta_{1} \\
& \text { 2: for } j=1, \ldots, m \text { do } \\
& \text { 3: } \quad w_{j}=A v_{j} \\
& \text { 4: for } i=1, \ldots, j \text { do } \\
& \text { 5: } \quad h_{i, j}=\left(w_{j}, v_{i}\right) \\
& \text { 6: } \quad w_{j}=w_{j}-h_{i, j} v_{i} \\
& \text { 7: } \quad \text { end for } \\
& \text { 8: } \quad h_{j+1, j}=\left\|w_{j}\right\|_{2} \\
& \text { 9: } \quad v_{j+1}=w_{j} / h_{j+1, j} \\
& \text { 0: }
\end{aligned}
$$

From (4), we see that

$$
h_{j+1, j}=\beta_{j+1} .
$$

This takes care of lines 8-9 in the algorithm. We also see that

$$
h_{j, j}=1, \quad h_{j-1, j}=-\beta_{j} .
$$

This enables us to replace lines $3-7$ with

$$
w_{j}=A v_{j}-h_{j-1, j} v_{j-1}-h_{j, j} v_{j}=A v_{j}+\beta_{j} v_{j-1}-v_{j}=B v_{j}+\beta_{j} v_{j-1}
$$

for $2 \leq j \leq m$. The case $j=1$ must be handled separately:

$$
w_{1}=A v_{1}-h_{1,1} v_{1}=A v_{1}-v_{1}=B v_{1} .
$$

We can combine these cases if we define $v_{0}=0$. Thus, the algorithm becomes

$$
\begin{aligned}
& r_{0}=b-A x_{0}, \beta_{1}=\left\|r_{0}\right\|_{2}, v_{1}=r_{0} / \beta_{1}, v_{0}=0 \\
& \text { for } j=1, \ldots, m \text { do } \\
& \quad w_{j}=B v_{j}+\beta_{j} v_{j-1} \\
& \quad \beta_{j+1}=\left\|w_{j}\right\|_{2} \\
& v_{j+1}=w_{j} / \beta_{j+1} \\
& \text { end for }
\end{aligned}
$$

d) To obtain a D-Lanczos-like method, we combine the full orthogonalization method (FOM) with the Arnoldi process from c), and use simplifications as in the derivation of D-Lanczos. The update equations for the FOM are

$$
y_{m}=\beta_{1} H_{m}^{-1} \mathrm{e}_{1}, \quad x_{m}=x_{0}+V_{m} y_{m},
$$

where $\mathrm{e}_{1}=[1,0, \ldots, 0]^{\mathrm{T}}$.
We are given the LU-factorization

$$
H_{m}=L_{m} U_{m}=\left[\begin{array}{cccc}
1 & & & \\
\lambda_{2} & 1 & & \\
& \ddots & \ddots & \\
& & \lambda_{m} & 1
\end{array}\right]\left[\begin{array}{cccc}
\eta_{1} & -\beta_{2} & & \\
& \ddots & \ddots & \\
& & \eta_{m-1} & -\beta_{m} \\
& & & \eta_{m}
\end{array}\right]
$$

By multiplying together L_{m} and U_{m} and comparing with H_{m}, we find

$$
\eta_{1}=1, \quad \lambda_{i}=\frac{\beta_{i}}{\eta_{i-1}}, \quad \eta_{i}=1+\lambda_{i} \beta_{i}=1+\frac{\beta_{i}^{2}}{\eta_{i-1}}, \quad \text { for } \quad 2 \leq i \leq m
$$

By induction, this shows that all $\eta_{i} \geq 1$. Since none of the elements on the diagonal (i.e. the eigenvalues) of L_{m} and H_{m} are zero, they are both nonsingular. Thus,

$$
x_{m}=x_{0}+V_{m} H_{m}^{-1} \beta_{1} \mathrm{e}_{1}=x_{0}+V_{m} U_{m}^{-1} L_{m}^{-1} \beta_{1} \mathrm{e}_{1}
$$

Now, define $P_{m}=V_{m} U_{m}^{-1}$ and $z_{m}=L_{m}^{-1} \beta_{1} \mathrm{e}_{1}$, so that

$$
x_{m}=x_{0}+P_{m} z_{m} .
$$

Define

$$
\begin{aligned}
& P_{m}=\left[p_{1}\left|p_{2}\right| \cdots \mid p_{m}\right]=\left[P_{m-1} \mid p_{m}\right], \\
& V_{m}=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{m}\right]=\left[V_{m-1} \mid v_{m}\right], \\
& U_{m}=\left[u_{1}\left|u_{2}\right| \cdots \mid u_{m}\right]=\left[\begin{array}{l|c}
U_{m-1} & \\
& -\beta_{m} \\
\hline & \eta_{m}
\end{array}\right] .
\end{aligned}
$$

Then we can write $P_{m} U_{m}=V_{m}$ as

$$
\begin{align*}
P_{m} U_{m} & =\left[P_{m-1} \mid p_{m}\right]\left[\begin{array}{l|l}
U_{m-1} & \\
& -\beta_{m} \\
\hline & \eta_{m}
\end{array}\right] \tag{5}\\
& =\left[P_{m-1} U_{m-1} \mid-\beta_{m} p_{m-1}+\eta_{m} p_{m}\right] \\
& =\left[V_{m-1} \mid v_{m}\right]=V_{m},
\end{align*}
$$

giving $P_{m-1} U_{m-1}=V_{m-1}$ (which is consistent with $P_{m} U_{m}=V_{m}$), and

$$
\begin{equation*}
-\beta_{m} p_{m-1}+\eta_{m} p_{m}=v_{m} \Longrightarrow p_{m}=\frac{1}{\eta_{m}}\left(v_{m}+\beta_{m} p_{m-1}\right) \tag{6}
\end{equation*}
$$

Next, define

$$
L_{m}=\left[\begin{array}{ll|l}
L_{m-1} & & \\
& & \\
\hline & \lambda_{m} & 1
\end{array}\right] \quad \text { and } \quad z_{m}=\left[\begin{array}{c}
z_{m-1} \\
\hline \zeta_{m}
\end{array}\right]
$$

where $z_{m-1}^{\mathrm{T}}=\left[z_{m-2}^{\mathrm{T}} \mid \zeta_{m-1}\right]$, and so on. Then, since $L_{m} z_{m}=\beta_{1} \mathrm{e}_{1}$, we get that $L_{m-1} z_{m-1}=\beta_{1} \mathrm{e}_{1}$ (which is consistent with $L_{m} z_{m}=\beta_{1} \mathrm{e}_{1}$), and

$$
\lambda_{m} \zeta_{m-1}+\zeta_{m}=0 \Longrightarrow \zeta_{m}=-\lambda_{m} \zeta_{m-1}
$$

Define x_{m-1} so that it is consistent with $x_{m}=x_{0}+P_{m} z_{m}$, i.e. define

$$
x_{m-1}=x_{0}+P_{m-1} z_{m-1} .
$$

We can now express x_{m} using x_{m-1} in the following way:

$$
\begin{aligned}
x_{m} & =x_{0}+P_{m} z_{m} \\
& =x_{0}+\left[P_{m-1} \mid p_{m}\right]\left[\frac{z_{m-1}}{\zeta_{m}}\right] \\
& =x_{0}+P_{m-1} z_{m-1}+\zeta_{m} p_{m} \\
& =x_{m-1}+\zeta_{m} p_{m} .
\end{aligned}
$$

We now have all the equations we need to step from x_{m-1} to x_{m}, but we also need starting values for all the variables. Since $U_{1}=\eta_{1}=1$, (5) gives us that $p_{1}=v_{1}$. If we define $p_{0}=0$, the update equation (6) gives us exactly this. Furthermore, if we define $\lambda_{1}=0$, we can use the update equation $\eta_{m}=1+\lambda_{m} \beta_{m}$ for $m=1$ as well. We also need a value for ζ_{1}. Since $L_{1}=1$ and $z_{1}=\zeta_{1}$, the equation $L_{1} z_{1}=\beta_{1} \mathrm{e}_{1}$ gives us $\zeta_{1}=\beta_{1}$. The starting values for r_{0}, β_{1}, v_{1} and v_{0} are given in the Arnoldi MGS algorithm from \mathbf{c}).
Combining all this with the Arnoldi MGS algorithm, we get the D-Lanczoslike algorithm (we suppress the convergence test, and reuse w_{m} as w in each iteration):

```
\(r_{0}=b-A x_{0}, \beta_{1}=\zeta_{1}=\left\|r_{0}\right\|_{2}, v_{1}=r_{0} / \beta_{1}, v_{0}=p_{0}=0, \lambda_{1}=0\)
for \(m=1,2, \ldots\) do
    if \(m>1\) then
        \(\lambda_{m}=\beta_{m} / \eta_{m-1}\)
        \(\zeta_{m}=-\zeta_{m-1} \lambda_{m}\)
    end if
    \(\eta_{m}=1+\lambda_{m} \beta_{m}\)
    \(p_{m}=\left(v_{m}+\beta_{m} p_{m-1}\right) / \eta_{m}\)
    \(x_{m}=x_{m-1}+\zeta_{m} p_{m}\)
    \(w=B v_{m}+\beta_{m} v_{m-1}\)
    \(\beta_{m+1}=\|w\|_{2}\)
    \(v_{m+1}=w / \beta_{m+1}\)
end for
```


Problem 4

a) We want to find $M=U \Sigma V^{\mathrm{H}}$, where U and V are unitary, and Σ is diagonal with non-negative elements. Note that M is symmetric, so it can be orthogonally diagonalized as $M=Q \Lambda Q^{\mathrm{T}}$. Thus, if the eigenvalues of M are non-negative, the diagonalization is an SVD with $U=V=Q$ and $\Sigma=\Lambda$.
We start by calculating the eigenvalues of M by solving the equation $\operatorname{det}(M-$ $\lambda \mathrm{I})=0$. This gives us $\lambda_{1}=100, \lambda_{2}=50$ and $\lambda_{3}=0$, which are all nonnegative. Thus, the singular values are $\sigma_{i}=\lambda_{i}$, or

$$
\Sigma=\left[\begin{array}{ccc}
100 & 0 & 0 \\
0 & 50 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The eigenvectors \hat{v}_{i} associated with the eigenvalues λ_{i} are solutions of

$$
\begin{equation*}
M \hat{v}_{i}=\lambda_{i} \hat{v}_{i} . \tag{7}
\end{equation*}
$$

The unitary matrix $V=\left[v_{1}\left|v_{2}\right| v_{3}\right]$ is formed by setting $v_{i}=\hat{v}_{i} /\left\|\hat{v}_{i}\right\|_{2}$. From (7), we get

$$
\hat{v}_{1}=[4,3,5]^{\mathrm{T}}, \quad \hat{v}_{2}=[4,3,-5]^{\mathrm{T}}, \quad \hat{v}_{3}=[3,-4,0]^{\mathrm{T}},
$$

and by normalizing, we get

$$
U=V=\left[\begin{array}{rrr}
4 / \sqrt{50} & 4 / \sqrt{50} & 3 / 5 \\
3 / \sqrt{50} & 3 / \sqrt{50} & -4 / 5 \\
5 / \sqrt{50} & -5 / \sqrt{50} & 0
\end{array}\right] .
$$

b) In general we have that $\sigma_{i}=\sqrt{\lambda_{i}\left(M^{\mathrm{H}} M\right)}$. For our symmetric matrix, $M=$ M^{H}, so $\sigma_{i}=\left|\lambda_{i}(M)\right|$. We showed in a) that all the eigenvalues of M are positive, so we get that the eigenvalues and singular values of M are equal to each other,

$$
\sigma_{i}=\lambda_{i}
$$

c) The rank of M is equal to the number of nonzero singular values, so we immediately see that $\operatorname{rank} M=2$.
d) We can get the best low-rank approximation $\tilde{M} \approx M$ through the use of the SVD in the sense that $\|M-\tilde{M}\|$ is minimized in the Euclidean or Frobenius norm. In the course, we showed that we could decompose M as

$$
M=\sum_{i=1}^{3} \sigma_{i} u_{i} v_{i}^{\mathrm{H}}
$$

and that the best approximation of rank at most equal to k is obtained by truncating the series above after k terms. Thus, the best rank-one approximation is

$$
\tilde{M}=\sigma_{1} u_{1} v_{1}^{\mathrm{H}}=\sigma_{1} v_{1} v_{1}^{\mathrm{T}}=\left[\begin{array}{ccc}
32 & 24 & 40 \\
24 & 18 & 30 \\
40 & 30 & 50
\end{array}\right]
$$

