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Note: This solution is more detailed than what was expected at the exam.

Problem 1

a) We see that A is symmetric, so it is Hermitian (AH = A). Then AHA = A2 =
AAH, which proves that A is normal.

b) Since A is Hermitian, the eigenvalues of A are real. Proof: Let Ax = λx, with
‖x‖2 = 1. Then

λ = λxHx = xHλx = xHAx = xHAHx = (Ax)Hx = λ̄xHx = λ̄,

so λ is real.

c) Let us first find a bound for the eigenvalues of A by using Gershgorin’s
theorem. Each Gershgorin disc has centre in d. All elements of A are real
and of the same sign as d, so the radius of each Gershgorin disc is equal to
the absolute value of the sum of the elements of each row, where we do not
include the element on the diagonal. All these radiuses must be smaller than

2|d|
∞∑

i=1

1
3i

= 2|d|
(

1
1− 1/3 − 1

)
= |d|.

Thus, all the eigenvalues are contained inside the disc with centre d and
radius r < |d|.
We will now prove that A does not have to be positive definite. Consider
the case where d < 0. Then all the eigenvalues λ are negative. Let Ax = λx,
where ‖x‖2 = 1. Then

xTAx = xTλx = λxTx = λ < 0,

so A can not be positive definite.

d) From c) we know that the Gershgorin discs do not contain zero, so A has no
eigenvalue equal to zero.
Assume now that A is singular. Then detA = 0, and λ = 0 is an eigenvalue
of A since it is a solution of the characteristic equation det(A− λI) = 0. This
contradicts the fact that A has no eigenvalues equal to zero, so A must be
nonsingular.
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e) The Jacobi iteration matrix is

G = I−D−1A,

where D = dI is the diagonal part of A. Thus,

G = −



0 1/3 1/9 · · · 1/3n−1

1/3 0 1/3 · · · 1/3n−2

1/9 1/3 0 . . . ...
... ... . . . . . . 1/3

1/3n−1 1/3n−2 · · · 1/3 0

 .

We can use the same type of arguments as in c) to show that the eigenvalues
of G are located in a disc with centre 0 and radius r < 1. This proves that the
spectral radius ρ(G) < 1, and the Jacobi iteration converges for any initial
vector.

f) From the hint, we know that L−1 is a lower-triangular Toeplitz matrix, so we
must find a1, a2, . . . , an so that

I = LL−1 = d



1
1/3 1
1/9 1/3 1
... ... . . . . . .

1/3n−1 1/3n−2 · · · 1/3 1





a1
a2 a1
a3 a2 a1
... ... . . . . . .
an an−1 · · · a2 a1


We calculate the first column of the product, starting with the topmost
element:

1 = da1 =⇒ a1 = 1/d,
0 = d(a1/3 + a2) = 1/3 + da2 =⇒ a2 = −1/(3d),

0 = d(a1/9 + a2/3 + a3) = da3 =⇒ a3 = 0,
0 = d(a1/27 + a2/9 + a3/3 + a4) = da4 =⇒ a4 = 0,

...
0 = dan =⇒ an = 0.

Thus,

L−1 = d−1


1
−1/3 1

. . . . . .
−1/3 1

 .
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g) For Gauss–Seidel iteration, the iteration matrix is

G = I− L−1A =



0 −1/3 −1/32 −1/33 · · · −1/3n−1

0 1/32 −8/33 −8/34 · · · −8/3n

0 0 1/32 −8/33 · · · −8/3n−1

... ... . . . . . . . . . ...
0 0 · · · 0 1/32 −8/33

0 0 · · · 0 0 1/32


.

We see that G is upper-triangular, so the eigenvalues of G are the diagonal
elements. Thus, the spectral radius is ρ(G) = 1/9.
If we use the alternative L−1 mentioned in the problem text, we get ρ(G) =
19/27.

Problem 2 Using centred finite differences with step length h, we discretize
the 2D Helmholtz equation

−∇2u− αu = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

where α is a positive constant, and f : Ω→ R, and obtain

−ui,j+1 − 2ui,j + ui,j−1

h2 − ui+1,j − 2ui,j + ui−1,j

h2 − αui,j = fi,j. (1)

We now follow the note by E. Rønquist to construct a diagonalization method
based on (1). Let U be the matrix with elements ui,j and G the matrix with
elements h2fi,j. Let T be the tridiagonal Toeplitz matrix with 2 on the diagonal
and −1 on the sub- and super-diagonals. Then (1) can be written as

TU + UT − h2αU = G. (2)

The matrix T is symmetric and can be orthogonally diagonalized T = QΛQT,
where Λ = diag(λ1, . . . , λn). We can then write (2) as

QΛQTU + UQΛQT − h2αU = G,

or
ΛQTUQ+QTUQΛ− h2αQTUQ = QTGQ.

Define Ũ = QTUQ with elements ũi,j, and G̃ = QTGQ with elements g̃i,j. Then

ΛŨ + ŨΛ− h2αŨ = G̃.



Solution TMA4205 Numerical Linear Algebra 4 December 2013 Page 4 of 9

Consider the element in position (i, j) of this equation:

λiũi,j + ũi,jλj − h2αũi,j = g̃i,j,

or
ũi,j = g̃i,j

λi + λj − h2α
.

Thus, we can write the diagonalization method as:

1. Compute G̃ = QTGQ.

2. Compute ũi,j = g̃i,j/(λi + λj − h2α).

3. Compute U = QŨQT.

Note: The method fails if there exists a combination of i and j so that h2α = λi +λj .

Problem 3

a) A Krylov subspace is a subspace based on a matrix A ∈ Rn×n and a vector
v ∈ Rn. The definition is

Km(A, v) = span{v,Av,A2v, . . . , Am−1v} ⊆ Rn.

Any vector in Km(A, v) can be written as qm−1(A)v, where qm−1 is a polyno-
mial of degree not exceeding m− 1, and qm−1(0) = I.
The Arnoldi process is an algorithm which finds an orthonormal basis of
Km(A, v) by application of the Gram–Schmidt process. Let these basis vectors
be the columns of the matrix Vm. The Arnoldi process also finds a Hessenberg
matrix Hm, so that

Hm = V T
mAVm. (3)

b) We insert A = I +B into (3).

Hm = V T
m (I +B)Vm = V T

mVm + V T
mBVm = I + V T

mBVm.

Observe that since BT = −B

HT
m = I− V T

mBVm,
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so Hm − I, must also be skew-symmetric. However, since Hm is Hessenberg,
Hm − I is also Hessenberg, which proves that Hm − I is tridiagonal. Thus,
Hm must be tridiagonal and have the matrix structure

Hm =


1 −β2

β2 1 . . .
. . . . . . −βm

βm 1

 . (4)

c) The Arnoldi MGS process is
1: r0 = b− Ax0, β1 = ‖r0‖2, v1 = r0/β1
2: for j = 1, . . . ,m do
3: wj = Avj

4: for i = 1, . . . , j do
5: hi,j = (wj, vi)
6: wj = wj − hi,jvi

7: end for
8: hj+1,j = ‖wj‖2
9: vj+1 = wj/hj+1,j

10: end for

From (4), we see that
hj+1,j = βj+1.

This takes care of lines 8–9 in the algorithm. We also see that

hj,j = 1, hj−1,j = −βj.

This enables us to replace lines 3–7 with

wj = Avj − hj−1,jvj−1 − hj,jvj = Avj + βjvj−1 − vj = Bvj + βjvj−1,

for 2 ≤ j ≤ m. The case j = 1 must be handled separately:

w1 = Av1 − h1,1v1 = Av1 − v1 = Bv1.

We can combine these cases if we define v0 = 0. Thus, the algorithm becomes
r0 = b− Ax0, β1 = ‖r0‖2, v1 = r0/β1, v0 = 0
for j = 1, . . . ,m do

wj = Bvj + βjvj−1
βj+1 = ‖wj‖2
vj+1 = wj/βj+1

end for
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d) To obtain a D-Lanczos-like method, we combine the full orthogonalization
method (FOM) with the Arnoldi process from c), and use simplifications as
in the derivation of D-Lanczos. The update equations for the FOM are

ym = β1H
−1
m e1, xm = x0 + Vmym,

where e1 = [1, 0, . . . , 0]T.
We are given the LU-factorization

Hm = LmUm =


1
λ2 1

. . . . . .
λm 1



η1 −β2

. . . . . .
ηm−1 −βm

ηm

 .
By multiplying together Lm and Um and comparing with Hm, we find

η1 = 1, λi = βi

ηi−1
, ηi = 1 + λiβi = 1 + β2

i

ηi−1
, for 2 ≤ i ≤ m.

By induction, this shows that all ηi ≥ 1. Since none of the elements on
the diagonal (i.e. the eigenvalues) of Lm and Hm are zero, they are both
nonsingular. Thus,

xm = x0 + VmH
−1
m β1e1 = x0 + VmU

−1
m L−1

m β1e1.

Now, define Pm = VmU
−1
m and zm = L−1

m β1e1, so that

xm = x0 + Pmzm.

Define

Pm = [p1 | p2 | · · · | pm] = [Pm−1 | pm],
Vm = [v1 | v2 | · · · | vm] = [Vm−1 | vm],

Um = [u1 | u2 | · · · | um] =

 Um−1
−βm

ηm

 .
Then we can write PmUm = Vm as

PmUm = [Pm−1 | pm]

 Um−1
−βm

ηm


= [Pm−1Um−1 | −βmpm−1 + ηmpm]
= [Vm−1 | vm] = Vm,

(5)
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giving Pm−1Um−1 = Vm−1 (which is consistent with PmUm = Vm), and

−βmpm−1 + ηmpm = vm =⇒ pm = 1
ηm

(vm + βmpm−1). (6)

Next, define

Lm =

 Lm−1

λm 1

 and zm =

 zm−1

ζm

 ,

where zT
m−1 = [zT

m−2 | ζm−1], and so on. Then, since Lmzm = β1e1, we get that
Lm−1zm−1 = β1e1 (which is consistent with Lmzm = β1e1), and

λmζm−1 + ζm = 0 =⇒ ζm = −λmζm−1.

Define xm−1 so that it is consistent with xm = x0 + Pmzm, i.e. define

xm−1 = x0 + Pm−1zm−1.

We can now express xm using xm−1 in the following way:

xm = x0 + Pmzm

= x0 + [Pm−1 | pm]
[
zm−1
ζm

]
= x0 + Pm−1zm−1 + ζmpm

= xm−1 + ζmpm.

We now have all the equations we need to step from xm−1 to xm, but we also
need starting values for all the variables. Since U1 = η1 = 1, (5) gives us
that p1 = v1. If we define p0 = 0, the update equation (6) gives us exactly
this. Furthermore, if we define λ1 = 0, we can use the update equation
ηm = 1 + λmβm for m = 1 as well. We also need a value for ζ1. Since L1 = 1
and z1 = ζ1, the equation L1z1 = β1e1 gives us ζ1 = β1. The starting values
for r0, β1, v1 and v0 are given in the Arnoldi MGS algorithm from c).
Combining all this with the Arnoldi MGS algorithm, we get the D-Lanczos-
like algorithm (we suppress the convergence test, and reuse wm as w in each
iteration):
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r0 = b− Ax0, β1 = ζ1 = ‖r0‖2, v1 = r0/β1, v0 = p0 = 0, λ1 = 0
for m = 1, 2, . . . do

if m > 1 then
λm = βm/ηm−1
ζm = −ζm−1λm

end if
ηm = 1 + λmβm

pm = (vm + βmpm−1)/ηm

xm = xm−1 + ζmpm

w = Bvm + βmvm−1
βm+1 = ‖w‖2
vm+1 = w/βm+1

end for

Problem 4

a) We want to find M = UΣV H, where U and V are unitary, and Σ is diag-
onal with non-negative elements. Note that M is symmetric, so it can be
orthogonally diagonalized as M = QΛQT. Thus, if the eigenvalues of M are
non-negative, the diagonalization is an SVD with U = V = Q and Σ = Λ.
We start by calculating the eigenvalues ofM by solving the equation det(M−
λI) = 0. This gives us λ1 = 100, λ2 = 50 and λ3 = 0, which are all non-
negative. Thus, the singular values are σi = λi, or

Σ =

100 0 0
0 50 0
0 0 0

 .
The eigenvectors v̂i associated with the eigenvalues λi are solutions of

Mv̂i = λiv̂i. (7)

The unitary matrix V = [v1 | v2 | v3] is formed by setting vi = v̂i/‖v̂i‖2. From
(7), we get

v̂1 = [4, 3, 5]T, v̂2 = [4, 3,−5]T, v̂3 = [3,−4, 0]T,

and by normalizing, we get

U = V =

4/
√

50 4/
√

50 3/5
3/
√

50 3/
√

50 −4/5
5/
√

50 −5/
√

50 0

 .
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b) In general we have that σi =
√
λi(MHM). For our symmetric matrix, M =

MH, so σi = |λi(M)|. We showed in a) that all the eigenvalues of M are
positive, so we get that the eigenvalues and singular values of M are equal to
each other,

σi = λi.

c) The rank of M is equal to the number of nonzero singular values, so we
immediately see that rankM = 2.

d) We can get the best low-rank approximation M̃ ≈M through the use of the
SVD in the sense that ‖M − M̃‖ is minimized in the Euclidean or Frobenius
norm. In the course, we showed that we could decompose M as

M =
3∑

i=1
σiuiv

H
i ,

and that the best approximation of rank at most equal to k is obtained by trun-
cating the series above after k terms. Thus, the best rank-one approximation
is

M̃ = σ1u1v
H
1 = σ1v1v

T
1 =

32 24 40
24 18 30
40 30 50

 .


