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Consider the following model 1D boundary value problem (BVP) for the advection-
diffusion differential equation:

~Ugc+aUy=f, inQ=(0,1)

(1
uo=1, Ul)=-1,

where a = a(x) and f = f(x) are given functions. We subdivide  into n identical sub-
intervals of length h = 1/n with end-points x; = jh, j =0,..., n. We will seek a numerical
approximation u; of the solution U(x;) to (1) as a solution to the linear algebraic sys-
tem, obtained from (1) by replacing the differential operators with their finite-difference
approximations. The diffusive term will be approximated using a 3-point central scheme

Uj—1—2Uj+ Uji]
h? )

For the advective term we consider three possible alternatives:

Uxx(xj) = (2)

Uil —Uj-—1 Uui—uj— Uil — U

J 2h] ’ Uylxj) = JhJ ’ Jh i
These choices correspond to central, backward, and forward finite differences. Substitut-
ing (2) and one of the choices in (3) into (1) evaluated (collocated) at x = x;, we arrive
at a sparse linear system of equations Au = b, where u = (uy, ..., u,_1)" is the vector of
unknowns; note that uy = U(0) and u, = U(1) are given for this BVP. In our case A and b
are of the form

Ux(xj) = or  Ux(xj)= 3)

(a1 6, ] [ 1 ]
Y2 az 62 B2
A: . . . , b: E ,
Yn-2 @n-2 Op- Pn—2
Yn-1 @n-1] _ﬁn—l_

Let B be expressed as §; = f(x;) + 7, where 7; accounts for the boundary contributions.

a) Put a(x;) = a;. Write down the expressions for a;, 6, y; and 7; for each of the
choices in (3).

b) Foreveryj=1,...,n—1 select the discretization of the advection operator in (3) in
such a way that the resulting matrix A is guaranteed to be irreducibly row diagonally
dominant. (According to Theorem 4.9 in [S] such a selection guarantees the conver-
gence of Jacobi and Gauss—Seidel methods.) Note: we can vary the discretization of
the advection term from one collocation point x; to another depending on a; and h!
Hint: If we replace all non-zero entries in the matrix by one and view the resulting
matrix as the adjacency matrix of a directed graph, the original matrix is irreducible
if and only if the directed graph is strongly connected.
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From now on we will utilize the backward finite difference approximation of the advection
operator and assume a =2,s0 @ =, =0, and y = y; are independent of j.

c)

Give an explicit formula for the eigenvalues of A.

Hint: Use the note “Eigenvalues of tridiagonal Toeplitz matrices”, which can be found
on the home page. No derivations are required.

We will now study the behaviour of the simple matrix-splitting methods for our problem.
Let A= D—-E-F,where D, —E, and —F are respectively the diagonal, strict lower, and
strict upper parts of A (see section 4.1 in [S]).

d

e)

f)

8

h)

Consider the Jacobi iteration u**V) = G 7 u'® + D~1p, where G 7= D YD-A). Starting
from the result in c), find the eigenvalues of the iteration matrix G;. What is the
spectral radius of G;? What does Gershgorin’s theorem say about the eigenvalues of
G?

How would you expect the error e® = u — 1®) between the kth Jacobi iterate u®
and the solution u to Au = b to behave as a function of k and n? In other words, if
you double 7, what must you do with k in order to get close to the same error e©)2

Hint: (i) Gy has n— 1 distinct eigenvalues and therefore it is diagonalizable; (ii) you
may find Taylor series expansions with respect to a small parameter h = n~! useful
when providing estimates.

Consider again the problem (1) with exact solution given by U(x) = cos(nix). What is
the corresponding right-hand side f? Let n = 20 and use Jacobi iteration to solve the
corresponding discrete system with this choice of f. Define u. to be the vector with
entries U(x;), i =1,...,n—1, i.e. the continuous solution evaluated at the interior grid

points. Define also eik) = u, —u® and plot log(lleik) llso) as a function of k. Iterate

until the error e® no longer changes. Next, increase n to 40, and repeat the solution
process. Finally, do it with n = 80. Compare the convergence behaviour for all three
cases (e.g. in one single plot). Are the results as expected? Can you explain your

observations?
Hint: u, — u® = (u, — w) + (u—u®)

In the notation of f), put n = 40 and compare the behavior of Jacobi and forward and
backward Gauss—-Seidel methods:

u*V = p"YE+F) u§’“) +D 7 1p,

]

(k+1) _ ) -1

Urgs =(D-E) FufGS+(D—E) b, and
(k+1) _ ) -1

ul ) =0~ Eul +(D-F)7p,

by for example plotting log(lleik) lloo) for all the methods as a function of k on the
same graph.

Could you provide a “physical” explanation as to why one version of Gauss—Seidel
outperforms the other on this problem?

The slow convergence of Jacobi can sometimes be remedied using relaxation:
(k+1) _ -1 (k) -1
Uy =[(1l-w)I+wD (D—A)]uw]+wD b

=[I-wD ' Alul) +wD™'b,
————

=Gyy
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where 0 < w < 2 is arelaxation parameter. As in f), find the eigenvalues of the iteration
matrix G, ;. Compute the optimal value of w for a given n. Does it improve the
performance of Jacobi iteration for this probem?

Hint: convince yourself that p(G, ) is minimized when Amax(Gyj) = —Amin (Ge))-

September 8, 2014 Page 3 of 3



