
Norwegian University of Science and
Technology
Department of Mathematical
Sciences

TMA4205 Numerical
Linear Algebra

Fall 2014

Semester project – part 2

Part 2 of the semester project focuses on different approaches for solving the linear algebraic
system resulting from the discretization of Stokes equations. Namely, we consider the following
boundary value problem:

−∇2u+∇p = f, inΩ= (0,Lx)× (0,Ly),

∇·u = 0, inΩ,

u = g, on ∂Ω,

(1)

or in component form
−(∂2

xx +∂2
y y)u +∂x p = fx , inΩ,

−(∂2
xx +∂2

y y)v +∂y p = fy , inΩ,

∂x u +∂y v = 0, inΩ,

u = gx , on ∂Ω,

v = g y , on ∂Ω.

(2)

Physically, the vector function u = (u, v) and the scalar function p describe the motion of a slow
viscous incompressible liquid with a known velocity g = (gx , g y) on the boundary ∂Ω and with a
force f = (fx , fy) acting upon it inside the domainΩ.

Note that owing to the incompressibility condition (equation ∇·u = 0), Gauss–Ostrogradsky
theorem implies that

0 =
∫
Ω
∇·u =

∫
∂Ω

n ·u =
∫
∂Ω

n ·g, (3)

where n is the outwards facing normal on ∂Ω. Thus the solutions only exist when the boundary
data g satisfies the compatibility condition (3), in which case the flow velocity can be determined
uniquely from (2), whereas the pressure is only defined up to an arbitrary additive constant.1

We will not describe possible discretizations of (2) in great detail. We utilize arguably the simplest
possible approach, where the square domain Ω is subdivided into nx ×ny small rectangular
cells with sides hx = Lx /nx and hy = Ly /ny as shown in Fig. 1. This leads to nx ny p-unknowns,
(nx −1)ny u-unknowns, and nx (ny −1) v-unknowns. If we store the unknowns in vectors U ∈

1Note, that the Stokes system only involves derivatives of the pressure, not the function itself.

October 14, 2014 Page 1 of 7

Semester project – part 2

Figure 1: Discretization of the Stokes equations utilized in this project (staggered grid discretiza-
tion); Lx = Ly = 1 and nx ×n = 4×4 cells are shown. Black, red, and blue dots show the locations
of p, u, and v unknowns, respectively. Red and blue squares show the locations at which the
boundary conditions gx and g y are evaluated; red and blue dots is where fx and respectively fy

is evaluated.

R(nx−1)ny , V ∈Rnx (ny−1), P ∈Rnx ny as follows:

U ≈



u(hx ,hy /2)
u(2hx ,hy /2)

...
u((nx −1)hx ,hy /2)

u(hx ,3hy /2)
...

u((nx −1)hx , (ny −1/2)hy)


, V ≈



v(hx /2,hy)
v(3hx /2,hy)

...
v((nx −1/2)hx ,hy)

v(hx /2,2hy)
...

v((nx −1/2)hx , (ny −1)hy)


,

P ≈



p(hx /2,hy /2)
p(3hx /2,hy /2)

...
p((nx −1/2)hx ,hy /2)

p(hx /2,3hy /2)
...

p((nx −1/2)hx , (ny −1/2)hy)


,

and similarly for the equation numbers, then the resulting linear algebraic system has a block
structure Ax 0 Bx

0 Ay By

B T
x B T

y 0


U

V
P

=
Fx

Fy

G

 , (4)

where Ax ∈ R(nx−1)ny×(nx−1)ny and Ay ∈ Rnx (ny−1)×nx (ny−1) are symmetric positive matrices re-
sulting from the discretization of −(∂2

xx + ∂2
y y)u and −(∂2

xx + ∂2
y y)v ; Bx ∈ R(nx−1)ny×nx ny and

By ∈ Rnx (ny−1)×nx ny are matrices resulting from the discretization of ∂x p and ∂y p. Note that

October 14, 2014 Page 2 of 7

Semester project – part 2

the matrix on the left hand side of (4) is singular as pressures P are only determined up to a
constant.

Matlab/Octave code for generating the left and the right hand side for (4) is available for down-
loading from the course’s wiki page. In addition to answering the questions described in this
document, you have to verify and document the correctness of each solution approach; see Ap-
pendix A for an example.

1 Unpreconditioned CG iteration in the pressure space.

In this part, we consider the following approach for solving (4). First, we express U and
V in terms of P from the first and second block-equations of (4): U = A−1

x (Fx −Bx P),
V = A−1

y (Fy −By P). We then substitute these expressions into the last equation to obtain a
smaller system for the pressure unknowns only:

[B T
x A−1

x Bx +B T
y A−1

y By︸ ︷︷ ︸
=:S

]P = B T
x A−1

x Fx +B T
y A−1

y Fy −G . (5)

a) Given that both Ax and Ay are symmetric and positive definite (SPD), show that S is
symmetric and positive semi-definite.

S is not positive definite; in fact it is singular and kerS = ker[B T
x ,B T

y]T = span〈e〉, where
e ∈Rnx ny is a vector of all ones (you do not have to prove this; simply use this as a given
fact in the project). This is yet another manifestation of the fact that pressures are only
determined up to a constant.

b) Show that the system SP = b admits a solution if and only if eTb = 0.

c) Show that S +αeeT is SPD (hence non-singular) for any α > 0. Further, for any
b ∈Rnx ny such that eTb = 0 show that (S +αeeT)P = b =⇒ SP = b.

d) Implement a matrix-vector product routine P 7→ (S +αeeT)P , which can be used
inside a CG iteration. Do not form A−1

x , A−1
y , S, or eeT!2 You should pre-compute

Cholesky factorizations of Ax , Ay and perform backward-forward substitutions when
necessary.

Note: the choice of α affects the condition number of S +αeeT. From here on use
α= 1/(nxny)2 in the implementation.

Present numerical evidence that the condition number of S+αeeT remains bounded
with respect to the mesh refinement by studying the dependence of the number of
unpreconditioned CG iterations needed to solve the linear system with this matrix in
the left hand side.

For fine discretizations of Stokes equations the accurate computation of a matrix-vector prod-
uct P 7→ SP , which requires solving auxiliary algebraic systems with matrices Ax and Ay at
every iteration becomes a major computational burden. Therefore, an alternative approach is
desirable.

2 Block-preconditioned MINRES iteration.

2I repeat: do not form A−1
x , A−1

y , S, or eeT!

October 14, 2014 Page 3 of 7

Semester project – part 2

a) Show that solving the linear system in 1 c), d) is equivalent to solving the following
modification of (4): Ax 0 Bx

0 Ay By

B T
x B T

y −αeeT


U

V
P

=
Fx

Fy

G

 . (6)

b) Compute a symbolic block-LDL factorization of the matrix in (6), that is, find the
unknown blocks in the representationAx 0 Bx

0 Ay By

B T
x B T

y −αeeT

=
 I 0 0

L21 I 0
L31 L32 I


︸ ︷︷ ︸

=:L

D11 0 0
0 D22 0
0 0 D33


︸ ︷︷ ︸

=:D

I LT
21 LT

31
0 I LT

32
0 0 I


︸ ︷︷ ︸

=:LT

(7)

We define the following preconditioner for (6)

M−1 := L̃−T

M−1
11 0 0
0 M−1

22 0
0 0 M−1

33

 L̃−1, (8)

where M−1
i i is a symmetric positive definite preconditioner for Di i , and L̃−1 = (L̃−T)T is a

block lower-triangular matrix approximating L−1.

c) Show that M−1 is symmetric and positive definite.

d) Comment on why each block Di i is either positive or negative definite. Define

M−1
i i =

{
D−1

i i , if Di i is positive definite,

−D−1
i i , if Di i is negative definite,

(9)

and L̃−1 = L−1. Show that in this case MINRES iteration preconditioned with (8)
converges in at most 2 iterations.

e) We now replace ±D−1
i i in (9) and all other inverse submatrices matrices entering L−1,

L−T with an application of a suitable symmetric positive definite preconditioner. For
example, in 1 d) we have learned that S+αeeT may be relatively efficiently precondi-
tioned with an identity matrix. You may use an incomplete Cholesky preconditioner
for Ax , Ay (doc ichol in Matlab).

Describe in detail in your report the application of M−1 to a block-vector (U ,V ,P).

f) Implement the matrix-vector multiplication with M−1 without forming any inverse
or dense matrices, and use it within MINRES solver for (6). Verify your implementa-
tion. Study the efficiency of this preconditioning strategy on a sequence of refined
meshes: compare the number of unpreconditioned/preconditioned MINRES itera-
tions needed to obtain some desired accuracy. Compare with the approach taken
in 1 . Note: you may need to experiment with different drop tolerances for the
incomplete Cholesky preconditioner to obtain a reasonable convergence speed.

We will now eliminate the last non-scalable part from the preconditioner (8), that is, the incom-
plete Cholesky based approximation to A−1

x , A−1
y .

October 14, 2014 Page 4 of 7

Semester project – part 2

3 Multigrid preconditioner for the Laplacian of velocity.

a) Implement a multigrid V-cycle for solving the linear systems AxU = bu , AyV = bv .
(The codes are very similar, only differing in minor details such as the inter-grid
operations.) As input, the program should take the initial guess, the right-hand side,
the number of levels (or grids), the number of pre-smoothings, and the number
of post-smoothings. Use the direct solver (backslash) to solve the problem on the
coarsest level; under-relaxed Jacobi iteration as a smoother; and linear interpolation
to transfer information between grids. Note: in the selected discretization scheme the
right hand side of the algebraic system is formed as hx hy f(xi , y j), where f(xi , y j) is a
given function. Therefore if you use injection as the coarsening operator, the coarsened
residual r 2h should be further multiplied with 4 = (2hx×2hy)/(hx×hy). You should
not explicitly form the matrices representing the inter-grid transfers.

It is advantageous to break the program down into several parts. The main routine
could for instance look like this:

function U = mgv_u(U0, rhs, Lx,Ly, nx,ny, nu1,nu2, level, max_level)

%

% U = mgv_u(U0, rhs, N, nu1, nu2, level, max_level) performs one

% multigrid V-cycle for the system A_x U = rhs

%

% input: U0 - initial guess

% rhs - right-hand side

% Lx, Ly - dimensions of the domain

% nx, ny - U0 and rhs are vectors of length (nx-1)ny

% nu1 - number of pre-smoothings

% nu2 - number of post-smoothings

% level - current level

% max_level - total number of levels

%

% output: U - numerical solution

% FORM A_x (nx, ny, Lx, Ly)

if level == max_level

% direct solve

U = A_x \ rhs;

else

% pre-smooth, e.g.

U = jacobi(A_x, U0, rhs, 2 / 3, nu1);

rh = rhs - A_x * U;

r2h = restriction_u(rh, nx,ny);

e2h = mgv_u(zeros((nx/2-1)*(ny-1),1), r2h, ...

Lx, Ly, nx/2, ny/2, nu1, nu2, level + 1, ...

max_level);

eh = interpolation_u(e2h, nx/2,ny/2);

U = U + eh;

U = jacobi(A_x, U, rhs, 2 / 3, nu2);

end

Before utilizing this algorithm within a block-preconditioner framework of 2 it is a
good idea to make sure that the multigrid implementation works as expected both

October 14, 2014 Page 5 of 7

Semester project – part 2

as a solver and a preconditioner for the Laplace problem. You can use the script
laplace_uv.m (analogous to stokes.m) for verification purposes.

b) Utilize one or several multigrid V-cycles as a preconditioner for Ax , Ay in the block-

preconditioning strategy of 2 . That is, replace the incomplete Cholesky-based
preconditioner with the one based on multigrid. Thus zu = A−1

x ru is approximated
as

z_u = zeros((nx-1)*ny, 1);

for j=1:Niter,

z_u = mgv_u(z_u, r_u, Lx, Ly, nx, ny, ...

nu1, nu2, 1, max_level);

end

Verify the implementation and assess the efficiency of this strategy as in 2 f).

A Verification

We consider a so-called Kovasznay flow benchmark:

function [u,v,p,fx,fy]=kovasznay

lambda = -1;

u = @(x,y) 1-exp(lambda*(x-0.5)).*cos(2*pi*y);

v = @(x,y) (lambda/2/pi)*exp(lambda*(x-0.5)).*sin(2*pi*y);

p = @(x,y) 0.5*(exp(2*lambda*(x-0.5)));

d2u = @(x,y) (-lambda^2 + 4*pi^2)*exp(lambda*(x-0.5)).*cos(2*pi*y);

d2v = @(x,y) (lambda^3/2/pi - 2*pi*lambda)*exp(lambda*(x-0.5)).*sin(2*pi*y);

px = @(x,y) lambda*exp(2*lambda*(x-0.5));

py = @(x,y) zeros(size(x)).*zeros(size(y));

fx = @(x,y) -d2u(x,y) + px(x,y);

fy = @(x,y) -d2v(x,y) + py(x,y);

The values of u, v on the boundary are then used as Dirichlet boundary conditions on the flow.
The problem is solved on a sequence of refined meshes and the error between the solution to the
discretized system and the analytical solution evaluated at grid points is measured and recorded.
For our discretization, if the linear algebraic system is solved accurately enough, the error in
velocity approximation should decay as O(h2) and in the pressure component as O(h), see Fig. 2.

For more details see stokes.m

October 14, 2014 Page 6 of 7

Semester project – part 2

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Error U

Error V

Error P

Figure 2: Discretization error decay as a function of grid size.

October 14, 2014 Page 7 of 7

