
Eigenvalue Problems

Anton Evgrafov

October 29, 2014



Problem:

Find λ ∈ C, u : Ω→ C:{
−∆u(z) = λu(z), z ∈ Ω,

u(z) = 0, z ∈ ∂Ω

⇓
discretization

⇓

Find λ ∈ C, u ∈ Cn:
Au = λu

Eigenvalue problem!



Motivation: antennas

f1 ≈ 28.5MHz f2 ≈ 34.6MHz f3 ≈ 42.6MHz

f4 ≈ 59.6MHz f5 ≈ 63.2MHz f13 ≈ 114.98MHz



Motivation: mechanics


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}



Motivation: SVD

A = UΣV ∗

⇓
AA∗ = UΣΣTU∗

A∗A = VΣTΣV ∗

σ - SVD of A iff σ2-eigenvalue of AA∗ (or A∗A)



Straightforward algorithm for finding eigenvalues:

1. Compute coefficients of

pA(λ) = det(A− λI )

2. Find roots
pA(λ) = 0

3. Optionally/if needed: find eigenvectors

Expensive; numerically unstable!



Similar matrices

Definition: A and B-similar if ∃X , det(X ) 6= 0:

A = XBX−1

Same eigenvalues (incl. algebraic multiplicity):

pA(λ) = det(A− λI ) = det[X (B − λI )X−1]

= det(X ) det(B − λI ) det(X−1) = det(B − λI ) = pB(λ)



Similar matrices

Definition: A and B-similar if ∃X , det(X ) 6= 0:

A = XBX−1

Same number of lin. indep. eigenvectors (geometric multiplicity):

Av = λv

XBX−1v = λv

B[X−1v ] = λ[X−1v ]



Eigenvalue-revealing factorizations:

If A = XΛX−1, Λ-diagonal

AX = XΛ

AX∗,j = Λj ,jX∗,j

Columns of X -eigenvectors, diagonal of Λ-eigenvalues!

Does not exist for defective matrices!



Eigenvalue-revealing factorizations:

Schur factorization: A = QRQ∗, Q∗Q = I , R-(upper) triangular
(Remember: A∗A = AA∗ =⇒ R-diagonal.)

Exists for all matrices!

A similar to R =⇒

λi (A) = λi (R) = Ri ,i



Is existence proof constructive?

Not in the sense of numerical analysis. . .

Start with Aq1 = λ1q1, complete q to ON basis Q̃ = [q1, . . . , qn]

Q̃∗AQ̃ = Q̃∗[Aq1,Aq2, . . . ,Aqn]

= Q̃∗[λ1q1,Aq2, . . . ,Aqn]

= [λ1e1, Q̃
∗Aq2, . . . , Q̃

∗Aqn]

=

[
λ1 w

0 Ã

]
=

[
λ1 w

0 Q̂R̂Q̂∗

]
-used induction hypothesis on a smaller submatrix Ã.



Is existence proof constructive?

Not in the sense of numerical analysis. . .

Start with Aq1 = λ1q1, complete q to ON basis Q̃ = [q1, . . . , qn]

Q̃∗AQ̃ =

[
λ1 w

0 Q̂R̂Q̂∗

]
-used induction hypothesis on a smaller submatrix Ã.

A = Q̃

[
1 0

0 Q̂

]
︸ ︷︷ ︸

=:Q

[
λ1 wQ̂

0 R̂

]
︸ ︷︷ ︸

=:R

[
1 0

0 Q̂∗

]
Q̃∗︸ ︷︷ ︸

=:Q∗



Recall Householder QR-factorization algorithm

Q∗
1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 =


× × × × ×
× × × ×
× × × ×
× × × ×
× × × ×





Recall Householder QR-factorization algorithm

Q∗
2Q

∗
1


× × × × ×
× × × ×
× × × ×
× × × ×
× × × ×

 =


× × × × ×
× × × ×
× × ×
× × ×
× × ×





Could we do something similar for Schur?

Q∗
1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

Q1 =


× × × × ×
× × × ×
× × × ×
× × × ×
× × × ×


...

Q∗


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

Q =


× × × × ×
× × × ×
× × ×
× ×
×


Not possible!



Connexion between polynomial roots and eigenvalues

Arbitrary polynomial:

p(x) = xn + an−1x
n−1 + · · ·+ a1x + a0

Define:

A =



0 −a0
1 0 −a1

1 0 −a2
1

. . .
...

. . . 0 −an−2

1 −an−1


Then p(λ) = det[λI − A]!

No formula for polynomial roots (Abel, 1842) =⇒ no finite
algorithm for eigenvalues!



Remember: all eigenvalue algorithms are inherently iterative!
(But in practice, only a few iterations are needed for good
algorithms.)



Phase 1/phase 2 approach

Phase 1: finite factorization

A = QÃQ∗

Q∗Q = I , Ã-significantly simpler than A

Phase 2: iterative computation of eigenvalues of Ã (hence also A)



Phase 1

A = QHQ∗

Q∗Q = I , H-(upper) Hessenberg
Algorithm: similar to Householder-QR

Q∗
1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 =


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×




× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

Q1 =


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×





Phase 1

A = QHQ∗

Q∗Q = I , H-(upper) Hessenberg
Algorithm: similar to Householder-QR

Q∗
1


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 =


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×



× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

Q1 =


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×





Phase 1

A = QHQ∗

Q∗Q = I , H-(upper) Hessenberg
Algorithm: similar to Householder-QR

Q∗
2


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

 =


× × × × ×
× × × × ×
× × × ×
× × ×
× × ×




× × × × ×
× × × × ×
× × × ×
× × ×
× × ×

Q∗
2 =


× × × × ×
× × × × ×
× × × ×
× × ×
× × ×





Phase 1

A = QHQ∗

Q∗Q = I , H-(upper) Hessenberg
Algorithm: similar to Householder-QR

Q∗
2


× × × × ×
× × × × ×
× × × ×
× × × ×
× × × ×

 =


× × × × ×
× × × × ×
× × × ×
× × ×
× × ×



× × × × ×
× × × × ×
× × × ×
× × ×
× × ×

Q∗
2 =


× × × × ×
× × × × ×
× × × ×
× × ×
× × ×





Full algorithm: Householder Hessenberg

1: for k = 1 to n − 2 do
2: x := Ak+1:n,k

3: vk := sign(x1)‖x‖2e1 + x
4: vk := vk/‖vk‖2
5: Ak+1:n,k:n = Ak+1:n,k:n − 2vk(v∗kAk+1:n,k:n)
6: A1:n,k+1:n = A1:n,k+1:n − 2(A1:n,k+1:nvk)v∗k
7: end for

Complexity:

∼
n−2∑
k=1

[
4(n − k)2︸ ︷︷ ︸
QR,line 5

+ 4n(n − k)︸ ︷︷ ︸
line 6

]
≈ 4n3/3︸ ︷︷ ︸

QR

+4n3/2

= 10n3/3 = 2.5× QR



Phase 1, A∗ = A

A = QHQ∗

A∗ = QH∗Q∗

⇓
H— tri-diagonal

Householder Hessenberg complexity: same as QR



Phase 2

Given: Hessenberg (or tri-diagonal) matrix
Construct iterative process for computing eigenvalues



Rayleigh quotient

Suppose x ∈ Cn \ {0} is a given approximation of an eigenvector.
Task: find eigenvalue!
I.e., find λ ∈ C:

xλ ≈ Ax

Solve as least-squares problem! Normal equations:

(x∗x)λ = x∗Ax

λ =
x∗Ax

x∗x
=: r(x)



Rayleigh quotient

Suppose x ∈ Cn \ {0} is a given approximation of an eigenvector.
Task: find eigenvalue!
I.e., find λ ∈ C:

xλ ≈ Ax

Solve as least-squares problem! Normal equations:

(x∗x)λ = x∗Ax

λ =
x∗Ax

x∗x
=: r(x)



Properties:

1. r(αx) = r(x), ∀α 6= 0, x 6= 0

2. r : smooth function of x [for x ∈ Cn: consider real and
complex components]

3. ‖Ax − r(x)x‖ = 0 iff x-eigenvector; then r(x) is eigenvalue.

Possible algorithm: solve a system of non-linear equations
Ax − r(x)x = 0, ‖x‖ = 1.



Derivatives:

Assume x ∈ Rn \ {0}, A ∈ Rn×n:

∂i r(x) =
[∂i (x

TAx)]xTx − xTAx∂i (x
Tx)

(xTx)2

=
([Ax ]i + [ATx ]i )x

Tx − 2(xTAx)xi
(xTx)2

=
2

xTx

[
[Ax ]i + [ATx ]i

2
− r(x)xi

]

∇r(x) =
2

xTx

[
A + AT

2
x − r(x)x

]



Derivatives:

Additionally assume A = AT. Then

∇r(x) =
2

xTx
[Ax − r(x)x ]

Therefore ∇r(x) = 0 iff x 6= 0 – eigenvector.

In particular, if Ax̄ = λx̄ then

r(x)− λ = O(‖x − x̄‖2),

in the vicinity of x̄ .

(Note: in non-Hermitian case r(x)− λ = O(‖x − x̄‖) only.)


	fd@rm@0: 


