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Solutions to exercise set 2

1 a) Since A is normal, it can be orthogonally diagonalized such that A =QΛQT, where
the columns of Q are the eigenvectors qi , and the entries of Λ are the eigenvalues λi

of A.

First, assume that xT Ax > 0 for all x 6= 0. This must be true for x = qi , so qT
i Aqi =

λi qT
i qi = λi‖qi‖2

2 > 0. We have proved that if A is positive definite, then all the
eigenvalues are positive.

Next, assume that the eigenvalues of A are positive. Since the eigenvectors qi form
a basis for Rn , we can represent any vector as a linear combination of the qi . Let
u =Qc be any nonzero vector in Rn . Then uT Au = cTQTQΛQTQc = cTΛc =∑

i λi c2
i .

All the λi are positive, and at least one of the ci are nonzero, so uT Au > 0. Thus, we
have proved the other direction.

b) The matrix A is normal, so it can be unitarily diagonalized, A =QΛQH. Thus, A AH =
QΛΛHQH =QΛHΛQH = AH A. We can then calculate the condition number:

κ(A) = ‖A‖2‖A−1‖2 =
√
ρ(A AH)

√
ρ(A−1 A−H) = max

i
|λi |max

i

1

|λi |
= maxi |λi |

mini |λi |
.

c) Assume first that A is positive definite. Then A is non-singular, so given a vector
y 6= 0, we can find a unique x 6= 0 so that y = Ax. Thus, yT A−1 y = xT ATx = xT Ax > 0.
To prove the converse, just substitute A ↔ A−1.

d) Since A is normal, we have that A = QΛQT with QTQ = QQT = I. Hence, we can
express the Rayleigh quotient as

R(x) = xT Ax

xTx
= xTQΛQTx

xTQQTx
.

If we now define y =QTx, we have

R = yTΛy

yT y
=

∑n
i=1λi y2

i∑n
i=1 y2

i

,

and using the fact that all the eigenvalues of A are positive, we obtain the bounds

R =
∑n

i=1λi y2
i∑n

i=1 y2
i

≤ λn
∑n

i=1 y2
i∑n

i=1 y2
i

=λn , R =
∑n

i=1λi y2
i∑n

i=1 y2
i

≥ λ1
∑n

i=1 y2
i∑n

i=1 y2
i

=λ1.

Here, λ1 is the smallest and λn is the largest eigenvalue of A.

2 a) A is normal if A AH = AH A. Here,

A =
[

2 0
−1 1

]
, AH =

[
2 −1
0 1

]
,
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which leads to

A AH =
[

4 −2
−2 2

]
and AH A =

[
5 −1
−1 0

]
.

Hence, A is not normal.

b) Here, A is a lower triangular matrix, and we have the eigenvalues λ1 = 2 and λ2 = 1
on the diagonal. For the eigenvectors, we have that

Av1 = 2v1 =⇒ v1 =
[

1
−1

]
, and Av2 = v2 =⇒ v2 =

[
0
1

]
.

c) We see that the eigenvectors are linearly independent, but they are not orthogonal
since vH

1 v2 6= 0.

d) Yes. All the eigenvalues are nondefective, so the eigenvectors form a full set of linearly
independent vectors for R2. This implies that A can be diagonalized, i.e. we can write
A =VΛV −1, where the columns of V are the eigenvectors of A and Λ is a diagonal
matrix containing the eigenvalues of A.

e) We rewrite A as

A = 1
2 (A+ AT)︸ ︷︷ ︸

H

+ 1
2 (A− AT)︸ ︷︷ ︸

S

,

where
H T = H

ST =−S

i.e. symmetric,

i.e. skew-symmetric.

Since H is symmetric, we can orthogonally diagonalize it, H =QΛQT. Hence, for all
u ∈R2, letting c =QTu,

uT Au = uTHu +uTSu︸ ︷︷ ︸
0

= uTHu = cTΛc =∑
i
λi c2

i .

We find that the matrix H is

H =
[

2 −1/2
−1/2 1

]
,

which has eigenvalues λ = (3±p
2)/2, which are both positive. Thus, we choose

α=λmin(H) = (3−p
2)/2, which makes

uT Au =∑
i
λi c2

i ≥α‖c‖2
2 =α‖u‖2

2.

f ) Yes, this follows from e) since α> 0.

g) A Schur factorization is a product A = QRQH for Q unitary and R upper triangu-
lar. From d), we know that A can be diagonalized, A = VΛV −1, however, V is not
unitary, so this is not a Schur factorization. We orthonormalize V using, say, the
Gram–Schmidt process, to obtain V = QR̃, where Q is unitary and R̃ is upper tri-
angular. Substituting this factorization into the diagonalization leads to a Schur
decomposition

A =QRQH, where R = R̃ΛR̃−1.
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n Time (s) Time/n3

500 1.30 ·10−2 1.04 ·10−10

600 2.29 ·10−2 1.06 ·10−10

700 3.52 ·10−2 1.03 ·10−10

800 5.27 ·10−2 1.03 ·10−10

900 7.27 ·10−2 1.00 ·10−10

Table 1: Two-dimensional Poisson problem with diagonalization method

The Gram–Schmidt process yields

w1 = v1, q1 = w1

‖w1‖2
= 1p

2

[
1
−1

]
w2 = v2 − (vH

2 q1)q1 =
[

0
1

]
− 1

2

[−1
1

]
= 1

2

[
1
1

]
, q2 = w2

‖w2‖2
= 1p

2

[
1
1

]
.

Thus

Q = 1p
2

[
1 1
−1 1

]
,

giving

R =QH AQ

= 1

2

[
1 −1
1 1

][
2 0
−1 1

][
1 1
−1 1

]
=

[
2 1
0 1

]
.

3 We consider again the Poisson problem

−∆u = f ,

u = 0,

in Ω= (0,1)× (0,1),

on ∂Ω.

and discretize this with the five point formula using a uniform grid spacing, h = 1/n, in
each spatial direction. The number of unknowns is therefore (n −1)2 ≈ n2.

a) i) First we solve the Poisson problem using the diagonalization method. See Ta-
ble 1.

ii) Next, we solve the same problem using LU factorization exploiting sparsity. See
Table 2

iii) Finally, we solve the same problem using full LU factorization without exploiting
sparsity. See Table 3.

b) All the methods perform as expected. Note the difference in absolute solution times.
The diagonalization method is clearly much better than either of the other methods.

c) For the one-dimensional Laplace operator the continuous eigenfunctions and eigen-
values are (see the note by Rønquist)

u∗
j (x) = sin( jπx),

λ∗
j = j 2π2, j = 1, . . . ,∞.
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n Time (s) Time/n4

50 1.55 ·10−2 2.47 ·10−9

60 2.97 ·10−2 2.29 ·10−9

70 5.12 ·10−2 2.13 ·10−9

80 8.34 ·10−2 2.04 ·10−9

90 1.27 ·10−1 1.93 ·10−9

Table 2: Two-dimensional Poisson problem with LU factorization exploting sparsity

n Time (s) Time/n6

50 0.153 9.78 ·10−12

60 0.404 8.67 ·10−12

70 0.945 8.03 ·10−12

80 2.031 7.75 ·10−12

90 4.026 7.58 ·10−12

Table 3: Two-dimensional Poisson problem with full LU factorization

From the note, we can also see that if we discretize the Laplace operator using a
central difference scheme with uniform grid spacing, h = 1/n, we get the matrix A1D

with eigenvalues

λ j = 2

h2

(
1−cos

(
jπ

n

))
, j = 1, . . . ,n −1.

Hence, we expect

λmin = 2

h2

(
1−cos

(
π

n

))
≈ 1

h2

π2

n2 ,

λmax = 2

h2

(
1−cos

(
(n −1)π

n

))
≈ 4

h2 ,

⇓

κ(A1D) = λmax

λmin
≈ 4

π2 n2.

The condition number should scale as O(n2) in 1D.

d) Consider now the two-dimensional Poisson problem

−∆u = f ,

u = 0,

in Ω= (0,1)× (0,1),

on ∂Ω.

In the continuous case, the eigenfunctions and eigenvalues of the Laplace operator
are given as

u∗
j ,k (x, y) = sin( jπx)sin(kπy),

λ∗
j ,k = j 2π2 +k2π2 = ( j 2 +k2)π2,

j = 1, . . . ,∞, k = 1, . . . ,∞.

These results are obtained simply by using separation of variables.

September 1, 2014 Page 4 of 5



Solutions to exercise set 2

n λmin(Â1D) λmin(Â1D) κ(A1D)

10 8.10 ·10−2 3.92 48.37
20 2.23 ·10−2 3.98 178.06
30 1.03 ·10−2 3.99 388.81
40 5.87 ·10−3 3.99 680.62

(a) One dimension

n λmin(Â2D) λmin(Â2D) κ(A2D)

10 1.62 ·10−1 7.84 48.37
20 4.47 ·10−2 7.96 178.06
30 2.05 ·10−2 7.98 388.81
40 1.17 ·10−2 7.99 680.62

(b) Two dimensions

Table 4: Condition numbers

Again, we discretize the Poisson problem using the five-point formula, and get the
discrete Laplace operator (or matrix), A2D. The eigenvalues of A2D are

λ j ,k = 2

h2

(
1−cos

(
jπ

n

))
+ 2

h2

(
1−cos

(
kπ

n

))
,

so we expect that

λmin = 2

h2

(
1−cos

(
π

n

))
+ 2

h2

(
1−cos

(
π

n

))
≈ 2

h2

π2

n2 ,

λmin =λ j ,k = 2

h2

(
1−cos

(
(n −1)π

n

))
+ 2

h2

(
1−cos

(
(n −1)π

n

))
≈ 8

h2 ,

⇓

κ(A2D) = λmax

λmin
≈ 4

π2 n2.

We compute the maximum and minimum eigenvalues for the matrices Â1D = h2 A1D

and Â2D = h2 A2D by using the command eig in MATLAB. The condition number is
found by the use of cond. See Table 4.

We observe that the condition number κ is the same for one and two dimensions.
We also get the expected behavior for the minimum and maximum eigenvalues.
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