

1 After applying *m* steps of Arnoldi process to a matrix *A* we obtain the matrix V_m containing the orthonormal basis for $\mathcal{K}_m(A, v_1)$ and an upper Hessenberg matrix H_m satisfying the equality $H_m = V_m^{\mathrm{T}} A V_m$. Assuming that $A^{\mathrm{T}} = -A$, the matrix on the right hand side of the equality sign is anti-symmetric. Therefore H_m is also antisymmetric and thus has only two non-zero diagonals:

$$H_m = \begin{pmatrix} 0 & -h_{2,1} & \dots & 0 \\ h_{2,1} & 0 & \ddots & 0 \\ 0 & \ddots & \ddots & -h_{m,m-1} \\ 0 & \dots & h_{m,m-1} & 0 \end{pmatrix}$$
(1)

As a result, Arnoldi process simplifies to

- 1: $v_1 := v/||v||_2$, $v_0 := 0$, $h_{1,0} := 0$ 2: **for** j=1,...,m **do** 3: $w_j := Av_j + h_{j,j-1}v_{j-1}$ 4: $h_{j+1,j} := ||w_j||_2$ 5: **if** $h_{j+1,j} = 0$ **then stop** 6: **end if** 7: $v_{j+1} := w_j/h_{j+1,j}$ 8: **end for**
- **a)** Since *A* is SPD, it follows from Exercise 2, Problem **1c**), that *A*⁻¹ is also SPD. Thus, it can be used to define the *A*⁻¹-norm in the same way as the SPD matrix *A* defines the *A*-norm.
 - **b)** We are given the system Ax = b, where A is SPD. Then, for all $\tilde{x} \in \mathbb{R}^n$,

$$\|x - \tilde{x}\|_{A}^{2} = (x - \tilde{x})^{T} A(x - \tilde{x})$$

= $(x - \tilde{x})^{T} A A^{-1} A(x - \tilde{x})$
= $(Ax - A\tilde{x})^{T} A^{-1} (Ax - A\tilde{x})$
= $(b - A\tilde{x})^{T} A^{-1} (b - A\tilde{x})$
= $\tilde{r}^{T} A^{-1} \tilde{r}$
= $\|\tilde{r}\|_{A^{-1}}^{2}$.

Hence,

$$x_m = \underset{\tilde{x} \in \mathcal{K}_m}{\operatorname{argmin}} \|x - \tilde{x}\|_A^2 = \underset{\tilde{x} \in \mathcal{K}_m}{\operatorname{argmin}} \|\tilde{r}\|_{A^{-1}}^2$$

c) The functional $f: \mathbb{R}^n \to \mathbb{R}$ is given by $f(w) = \frac{1}{2}w^T A w - w^T b$. This functional attains a minimum since *A* is SPD. Starting at x_j and minimizing *f* along the search direction p_j gives

$$f(x_j + \alpha p_j) = \frac{1}{2} (x_j + \alpha p_j)^{\mathrm{T}} A(x_j + \alpha p_j) - (x_j + \alpha p_j)^{\mathrm{T}} b,$$

$$= \frac{1}{2} x_j^{\mathrm{T}} A x_j + \alpha x_j^{\mathrm{T}} A p_j + \frac{1}{2} \alpha^2 p_j^{\mathrm{T}} A p_j - x_j^{\mathrm{T}} b - \alpha p_j^{\mathrm{T}} b.$$

At the minimum,

$$0 = \frac{df}{d\alpha} = x_j^{\mathrm{T}} A p_j + \alpha p_j^{\mathrm{T}} A p_j - p_j^{\mathrm{T}} b$$
$$= -p_j^{\mathrm{T}} r_j + \alpha p_j^{\mathrm{T}} A p_j$$
$$\downarrow$$
$$\alpha = \frac{(p_j, r_j)}{(A p_j, p_j)}.$$

But

$$p_{j} = r_{j} + \beta_{j-1}p_{j-1}$$

= $r_{j} + \beta_{j-1}(r_{j-1} + \beta_{j-2}p_{j-2})$
:
= $r_{j} + \sum_{i=0}^{j-1} c_{i}r_{i}$,

where c_i are constants. Hence, due to the orthogonality of the residuals r_i , we get that $(p_j, r_j) = (r_j, r_j)$, which in turn gives us the result

$$\alpha = \frac{(r_j, r_j)}{(Ap_j, p_j)}.$$

3 Let H_{m-1} , \bar{H}_{m-1} , $V_{m-1} = [v_1, \dots, v_{m-1}]$, $V_m = [v_1, \dots, v_m]$ be the usual matrices obtained after m - 1 steps of Arnoldi process starting from $v_1 = Av_0/||Av_0||_2$, where $v_0 = r_0$. We will also write $\bar{V}_m = [v_0, V_{m-1}]$.

Since V_{m-1} contains the orthonormal basis for $\mathcal{K}_{m-1}(A, Ar_0)$, the columns of \bar{V}_m form a basis for $\mathcal{K}_m(A, r_0)$.

As in any residual-projection algorithm, in GMRES we are looking for an approximate solution in the form $x_m = x_0 + \bar{V}_m y_m$, where the unknowns $y_m \in \mathbb{R}^m$ are chosen in such a way as to minimize the 2-norm of the residual

$$r_m = r_0 - A\bar{V}_m y_m = r_0 - [Av_0, AV_{m-1}]y_m = r_0 - [\|Av_0\|_2 v_1, V_m\bar{H}_{m-1}]y_m$$

= $r_0 - V_m [\|Av_0\|_2 e_1, \bar{H}_{m-1}]y_m.$

Let $P_m = V_m V_m^T$ be the orthogonal projector onto span (v_1, \dots, v_m) .

$$\|r_m\|_2 = \|(I - P_m)\{r_0 - V_m[\|Av_0\|_2 e_1, \bar{H}_{m-1}]y_m\}\|_2 + \|P_m\{r_0 - V_m[\|Av_0\|_2 e_1, \bar{H}_{m-1}]y_m\}\|_2$$

= $\|r_0 - V_m V_m^{\mathrm{T}} r_0\|_2 + \|V_m\{V_m^{\mathrm{T}} r_0 - [\|Av_0\|_2 e_1, \bar{H}_{m-1}]y_m\}\|_2.$

The first term is independent from the selection of y_m , whereas the second term can be made zero by chosing y_m to be a solution of a *triangular* (recall: \bar{H}_{m-1} is $m \times m - 1$ upper Hessenberg with $h_{j+1,j} > 0$) $m \times m$ system

$$[\|Av_0\|_2 e_1, \bar{H}_{m-1}]y_m = V_m^{\mathrm{T}} r_0.$$

Thus $r_m = (I - P_m)r_0$ and is therefore orthogonal to $\operatorname{ran} P_m = \operatorname{span}(v_1, \dots, v_m)$. Its norm $||r_0 - V_m V_m^{\mathrm{T}} r_0||_2$ is computable without the need to know y_m or x_m .