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Problem 1

a)

b)

Let

A:((l) g)

Perform one iteration of QR-algorithm (for computing eigenvalues) with shift
uw=1.

Solution: The shifted matrix

12
A‘“IZ<1 2)

has orthogonal (but not orthonormal) columns. Thus @ in its QR-factorization
is easily obtained by rescaling the columns, and R is diagonal with the length
of the columns of A on the diagonal:

o= (0 ) me (0

Furthermore Q = QT, R = RT, therefore RQ + ul = (QR + ul)T = AT.

Let now A € R™™ be an arbitrary square matrix. Assume that the shift
i in the QR-algorithm with shifts is equal to one of the eigenvalues of A.
How can we easily detect this situation based on the QR factorization of the
shifted matrix?

Solution: If y € o(A) then 0 = det(A — pul) = det(QR) = det(Q) det(R).
Since @ is unitary, |det(Q)| = 1 and therefore det(R) = 0. Now R is upper
triangular and therefore must have a 0 element on the diagonal.

Problem 2 Let

a)

()

Find a singular value decomposition of A.

Solution: A is symmetric and therefore is unitarily diagonalizable. Its
characteristic polynomial is

paA) =(1—-X)?—=9=X—-2\-38
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b)

thus the eigenvalues are A\; = —2 and Ay = 4. The corresponding eigenvectors
are for example
(e (1
q1 = _1/\/§ G2 = 1/\/§

A = [q1, go]diag(—=2,4)[q1, ¢2] " = [q1, qo]diag(2,4)[—q1, 2],

the latter being an SVD of A.

Therefore

Find the best, with respect to the || - ||-norm, rank 1 approximation of A™!.
That is, find some vectors p, ¢ € R? minimizing the norm ||pg™ — A7Y||5.

Solution: Let UXVT be an SVD of A with non-singular ¥. Then A~! =
VE-IUT is an SVD of A7!. The best rank-1 approximation of A~! is
Vo tUT, where o, is the smallest singular value of A (reciprocal of the
largest singular value of A™!) with the corresponding singular vectors U,,
V. Given the previously computed SVD we can take p = —q1, ¢ = 1/2¢,

pq = <_11/\>/§§> 1/2(1/v2 —1/v2) = (]1/{14 _11/;14)

Let B € R™™ be an arbitrary non-singular matrix, and let xq,b € R™ be
given vectors. Further, let B; = pg' be a rank 1 approximation of B!
for some p,q € R™. Consider a general projection method with a search
space K and a constraint space L for solving a left-preconditioned linear
algebraic system B;Bx = Bjb. Show that & € xy 4+ K satisfies Petrov—
Galerkin conditions if and only if at least one of the following conditions
hold:
(i) b—Bxlgq or (i) pL L.

Solution: Petrov—Galerkin conditions are:

F€xg+K and  Byb— B Bi=pq(b—B%)LlL.

The condition on the left is given; the condition on the right is a product of a
vector p and a scalar ¢* (b — BZ). Thus the resulting vector is orthogonal to £ iff
p L Lorq"(b— Bz)=0.
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Problem 3 Let A € C"™" be an arbitrary square matrix. We put B =
(A+ A%)/2, C = (A — A")/2; in particular A = B + C.

a) Show that o(B) C R and o(C') C iR, where o(+) is the spectrum of a matrix
and i? = —1.

Solution: The short answer here is that B is Hermitian (B = BY and C
is skew-Hermitian (C = —C™). One can also argue directly like this: if
Bv = \v for some A € C and v € C"\ {0} then

Al* = (h,v) = (Bv,v) = (v, B') = (v, Bv) = (v, Av) = AlJv]]*.
Since [|v||> # 0 we get A = A, or A € R.

b) Let o € C be an arbitrary scalar, and I € R™*" be the identity matrix. Show
that B + ol and C' + ol are unitarily diagonalizable.

Solution: The matrix is unitarily diagonalizable iff it is normal. Normal-
ity follows from that of C', B, and the fact that they commute with +al.
Alternatively, direct computation:

(Btal)"(B+al)=(B+al)(B+al)=B*+(a+a)B+aal = (B+al)(B+al)",
(C+aD(Ctal)=(-C+al)(C+al)=—-C*+(a—a)C+aal = (C=+al)(C=+al)"

Assume now that that both B + al and C' + al are non-singular. Consider the
following iterative algorithm for solving the system Az = b starting with some
initial approximaiton zy € C™:
for k=0,1,...,do
Tpp12 = (B+al)7Hb— (C — al)zy)
Ty = (C+al) b — (B — al )z
end for

c) Show that if @ = 0 the algorithm converges, but the limits z = limy_, T
and # = limy_,c T41/2 do not necessarily coincide or solve the system Az = b
(or Az =b).

Solution: Direct computation: 1/ = B~[b— Caql, 1 = C~b— Bxy o] =
C~'[b— BB™'[b— Cx]] = zo. Thus algorithm converges, but not necessarily
to the solution of the system Az = b.
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d)

Show that the sequence of points z; generated by the algorithm satisfies
limy o0 [|[zx — A70||2 = O for an arbitrary zo € C" if and only if p((C +
al)™H (B —al)(B+ al)™(C — al)) < 1, where p(+) is a spectral radius of a
matrix.

Solution: Exactly as with matrix-splitting algorithms, one considers the
error ey = xp — A7'b. Then €112 = (B + ol)"HC — al)ey, and epyq =
(C+al) M (B=al)epi12 = (CH+al) (B—al)(B+al) (C—al)e;. Again,
exactly as with matrix-splitting algorithms we obtain convergence from an
arbitrary starting point iff the spectral radius of the iteration matrix is < 1.

Let A be Hermitian and positive definite. Show that the algorithm above
converges for an arbitrary > 0 and zo € C.

Solution: If A is Hermitian then C' =0, A = B. If A is additionally positive
definite then so is B. Thus the algorithm’s iteration matrix is (al)~*(B —
al)(B+al) Y (—al) = —=(B—al)(B+al) . If A\1,..., \, are eigenvalues
of B, then the eigenvalues of the iteration matrix are —(\; — «)/(\; + ).
Since \; > 0, a > 0, the spectral radius of the iteration matrix will be < 1.
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Problem 4 Let A € R™™ be a symmetric and positive definite matrix and
b € R" be an arbitrary vector. Let =, = A~1b.

a)

Show that the standard A-norm error estimate for the conjugate gradient

algorithm:
k—11"
f']nm—mm

m Uk <2
Iz xm_{ﬁ+1

implies the 2-norm estimate

Vi —11"
o = .l < 2 YL | oo = 2.l

where £ = Apax(A)/Amin(A) is the spectral condition number of A.

Solution: Since A is normal (symmetric!) then it is unitarily diagonalizable.
Let ¢q,...,q, be an orthonormal basis composed of eigenvvectors of A and
A1, ..., A, be the corresponding (positive) eigenvalues. Let z = >, a;q;.
Then lo]3 = S Jasl?, ol = £ Jas®A Thus min{A o] < [lo]f <
max{\; }|x||3, from which the estimate follows.

Let V5,,, Hs, be the matrices produced after 2m iterations of Arnoldi process
(without breakdown) applied to A, starting from some vector ro = b — Axy.

Let V,, := (Vits Vig, ..oy Viom—1] (i.e., the submatrix of V3, corresponding to odd
columns), and H,, = VT AV,,.

b)

Show that H,, is a non-singular diagonal matrix.

Solution: By construction Hs,, = V,I AVj,,, thus H, VTAVm is its
submatrix corresponding to the odd rows/columns. As A is symmetric, then
H,,, is tri-diagonal, and as a result H,, is diagonal. Furthermore, (Hm)” =
(Vi) LAV, > 0 since A is positive definite and the columns of V,, (and
Vo) have length 1.

Consider now an orthogonal projection method for the system Ax = b with
L = K = RanV,,, where we seck 2, € zo + K satisfying the Galerkin
orthogonality condition. Show that #,, = zg + (rg70)(rg Arg) ‘ro. (That is,
the method takes one steepest descent step and then stops improving the
solution.)
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Solution: Since K = Raan we can write 2, = xo + Vmgjm for some ¢,,.
Galerkin orthogonality condition is
0= Vnrf(b - Aim) = VWT(TO - Avmgm) = VTETO - f{mgm = ||TO||2€1 - f{mgnm

A

since (Vi)«1 = ro/||rol|2. Therefore

170]l2/ (Hom) 11 7oll2/ (Vi) 5 A(Vin)e1) Iroll3/ (g Aro)
) 0 0 0
Ym = : - : - :
0 0 0

As a result Z,, = xg + ||r0||§(TOTATO)_1(Vm)*1 = z0 + ||rol|3(rg Aro) 'ro.



