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Problem 1

a) Let

A =
(

0 2
1 3

)
.

Perform one iteration of QR-algorithm (for computing eigenvalues) with shift
µ = 1.

Solution: The shifted matrix

A− µI =
(
−1 2
1 2

)

has orthogonal (but not orthonormal) columns. ThusQ in its QR-factorization
is easily obtained by rescaling the columns, and R is diagonal with the length
of the columns of A on the diagonal:

Q =
(
−1/
√

2 1/
√

2
1/
√

2 1/
√

2

)
R =

(√
2 0

0 2
√

2

)

Furthermore Q = QT, R = RT, therefore RQ+ µI = (QR + µI)T = AT.

b) Let now A ∈ Rn×n be an arbitrary square matrix. Assume that the shift
µ in the QR-algorithm with shifts is equal to one of the eigenvalues of A.
How can we easily detect this situation based on the QR factorization of the
shifted matrix?

Solution: If µ ∈ σ(A) then 0 = det(A − µI) = det(QR) = det(Q) det(R).
Since Q is unitary, | det(Q)| = 1 and therefore det(R) = 0. Now R is upper
triangular and therefore must have a 0 element on the diagonal.

Problem 2 Let
A =

(
1 3
3 1

)
.

a) Find a singular value decomposition of A.

Solution: A is symmetric and therefore is unitarily diagonalizable. Its
characteristic polynomial is

pA(λ) = (1− λ)2 − 9 = λ2 − 2λ− 8
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thus the eigenvalues are λ1 = −2 and λ2 = 4. The corresponding eigenvectors
are for example

q1 =
(

1/
√

2
−1/
√

2

)
q2 =

(
1/
√

2
1/
√

2

)
Therefore

A = [q1, q2]diag(−2, 4)[q1, q2]T = [q1, q2]diag(2, 4)[−q1, q2]T,

the latter being an SVD of A.

b) Find the best, with respect to the ‖ · ‖2-norm, rank 1 approximation of A−1.
That is, find some vectors p, q ∈ R2 minimizing the norm ‖pqT − A−1‖2.

Solution: Let UΣV T be an SVD of A with non-singular Σ. Then A−1 =
V Σ−1UT is an SVD of A−1. The best rank-1 approximation of A−1 is
Vnσ

−1
n UT

n , where σn is the smallest singular value of A (reciprocal of the
largest singular value of A−1) with the corresponding singular vectors Un,
Vn. Given the previously computed SVD we can take p = −q1, q = 1/2q1,

pqT =
(
−1/
√

2
1/
√

2

)
1/2

(
1/
√

2 −1/
√

2
)

=
(
−1/4 1/4
1/4 −1/4

)

c) Let B ∈ Rn×n be an arbitrary non-singular matrix, and let x0, b ∈ Rn be
given vectors. Further, let B1 = pqT be a rank 1 approximation of B−1

for some p, q ∈ Rn. Consider a general projection method with a search
space K and a constraint space L for solving a left-preconditioned linear
algebraic system B1Bx = B1b. Show that x̃ ∈ x0 + K satisfies Petrov–
Galerkin conditions if and only if at least one of the following conditions
hold:

(i) b−Bx̃ ⊥ q or (ii) p ⊥ L.

Solution: Petrov–Galerkin conditions are:

x̃ ∈ x0 +K and B1b−B1Bx̃ = pqT(b−Bx̃) ⊥ L.

The condition on the left is given; the condition on the right is a product of a
vector p and a scalar qT(b− Bx̃). Thus the resulting vector is orthogonal to L iff
p ⊥ L or qT(b−Bx̃) = 0.
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Problem 3 Let A ∈ Cn×n be an arbitrary square matrix. We put B =
(A+ AH)/2, C = (A− AH)/2; in particular A = B + C.

a) Show that σ(B) ⊂ R and σ(C) ⊂ iR, where σ(·) is the spectrum of a matrix
and i2 = −1.

Solution: The short answer here is that B is Hermitian (B = BH and C
is skew-Hermitian (C = −CH). One can also argue directly like this: if
Bv = λv for some λ ∈ C and v ∈ Cn \ {0} then

λ‖v‖2 = (λv, v) = (Bv, v) = (v,BHv) = (v,Bv) = (v, λv) = λ̄‖v‖2.

Since ‖v‖2 6= 0 we get λ = λ̄, or λ ∈ R.

b) Let α ∈ C be an arbitrary scalar, and I ∈ Rn×n be the identity matrix. Show
that B ± αI and C ± αI are unitarily diagonalizable.

Solution: The matrix is unitarily diagonalizable iff it is normal. Normal-
ity follows from that of C, B, and the fact that they commute with ±αI.
Alternatively, direct computation:

(B ± αI)H(B ± αI) = (B ± ᾱI)(B ± αI) = B2 ± (α + ᾱ)B + αᾱI = (B ± αI)(B ± αI)H,

(C ± αI)H(C ± αI) = (−C ± ᾱI)(C ± αI) = −C2 ± (ᾱ− α)C + αᾱI = (C ± αI)(C ± αI)H.

Assume now that that both B + αI and C + αI are non-singular. Consider the
following iterative algorithm for solving the system Ax = b starting with some
initial approximaiton x0 ∈ Cn:

for k = 0, 1, . . . , do
xk+1/2 = (B + αI)−1[b− (C − αI)xk]
xk+1 = (C + αI)−1[b− (B − αI)xk+1/2]

end for

c) Show that if α = 0 the algorithm converges, but the limits x̄ = limk→∞ xk

and x̂ = limk→∞ xk+1/2 do not necessarily coincide or solve the system Ax̄ = b
(or Ax̂ = b).

Solution: Direct computation: x1/2 = B−1[b−Cx0], x1 = C−1[b−Bx1/2] =
C−1[b−BB−1[b−Cx0]] = x0. Thus algorithm converges, but not necessarily
to the solution of the system Ax = b.
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d) Show that the sequence of points xk generated by the algorithm satisfies
limk→∞ ‖xk − A−1b‖2 = 0 for an arbitrary x0 ∈ Cn if and only if ρ((C +
αI)−1(B − αI)(B + αI)−1(C − αI)) < 1, where ρ(·) is a spectral radius of a
matrix.

Solution: Exactly as with matrix-splitting algorithms, one considers the
error ek = xk − A−1b. Then ek+1/2 = (B + αI)−1(C − αI)ek, and ek+1 =
(C+αI)−1(B−αI)ek+1/2 = (C+αI)−1(B−αI)(B+αI)−1(C−αI)ek. Again,
exactly as with matrix-splitting algorithms we obtain convergence from an
arbitrary starting point iff the spectral radius of the iteration matrix is < 1.

e) Let A be Hermitian and positive definite. Show that the algorithm above
converges for an arbitrary α > 0 and x0 ∈ C.

Solution: If A is Hermitian then C = 0, A = B. If A is additionally positive
definite then so is B. Thus the algorithm’s iteration matrix is (αI)−1(B −
αI)(B + αI)−1(−αI) = −(B − αI)(B + αI)−1. If λ1, . . . , λn are eigenvalues
of B, then the eigenvalues of the iteration matrix are −(λi − α)/(λi + α).
Since λi > 0, α > 0, the spectral radius of the iteration matrix will be < 1.
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Problem 4 Let A ∈ Rn×n be a symmetric and positive definite matrix and
b ∈ Rn be an arbitrary vector. Let x∗ = A−1b.

a) Show that the standard A-norm error estimate for the conjugate gradient
algorithm:

‖xm − x∗‖A ≤ 2
[√

κ− 1√
κ+ 1

]m

‖x0 − x∗‖A,

implies the 2-norm estimate

‖xm − x∗‖2 ≤ 2
√
κ

[√
κ− 1√
κ+ 1

]m

‖x0 − x∗‖2,

where κ = λmax(A)/λmin(A) is the spectral condition number of A.

Solution: Since A is normal (symmetric!) then it is unitarily diagonalizable.
Let q1, . . . , qn be an orthonormal basis composed of eigenvvectors of A and
λ1, . . . , λn be the corresponding (positive) eigenvalues. Let x = ∑

i αiqi.
Then ‖x‖2

2 = ∑
i |αi|2, ‖x‖2

A = ∑
i |αi|2λi. Thus min{λi}‖x‖2

2 ≤ ‖x‖2
A ≤

max{λi}‖x‖2
2, from which the estimate follows.

Let V2m, H2m be the matrices produced after 2m iterations of Arnoldi process
(without breakdown) applied to A, starting from some vector r0 = b− Ax0.

Let V̂m := [V∗,1, V∗,3, . . . , V∗,2m−1] (i.e., the submatrix of V2m corresponding to odd
columns), and Ĥm = V̂ T

mAV̂m.

b) Show that Ĥm is a non-singular diagonal matrix.

Solution: By construction H2m = V T
2mAV2m, thus Ĥm = V̂ T

mAV̂m is its
submatrix corresponding to the odd rows/columns. As A is symmetric, then
H2m is tri-diagonal, and as a result Ĥm is diagonal. Furthermore, (Ĥm)ii =
(V̂m)T

∗iA(V̂m)∗i > 0 since A is positive definite and the columns of V̂m (and
V2m) have length 1.

c) Consider now an orthogonal projection method for the system Ax = b with
L = K = RanV̂m, where we seek x̂m ∈ x0 + K satisfying the Galerkin
orthogonality condition. Show that x̂m = x0 + (rT

0 r0)(rT
0 Ar0)−1r0. (That is,

the method takes one steepest descent step and then stops improving the
solution.)
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Solution: Since K = RanV̂m we can write x̂m = x0 + V̂mŷm for some ŷm.
Galerkin orthogonality condition is

0 = V̂ T
m (b− Ax̂m) = V̂ T

m (r0 − AV̂mŷm) = V̂ T
m r0 − Ĥmŷm = ‖r0‖2e1 − Ĥmŷm,

since (V̂m)∗1 = r0/‖r0‖2. Therefore

ŷm =


‖r0‖2/(Ĥm)11

0
...
0

 =


‖r0‖2/((V̂m)T

∗1A(V̂m)∗1)
0
...
0

 =


‖r0‖3

2/(rT
0 Ar0)

0
...
0

 .

As a result x̂m = x0 + ‖r0‖3
2(rT

0 Ar0)−1(V̂m)∗1 = x0 + ‖r0‖2
2(rT

0 Ar0)−1r0.


