

TMA4205 Numerical Linear Algebra Fall 2015

Exercise set 5

Implement a Matlab program for finding an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ in a "naïve" fashion. That is, given A, v, first generate an $n \times m$ matrix K with $K_{*1} = v/||v||_2$ and $K_{*i} = AK_{*i-1}/||AK_{*i-1}||_2$ of normalized vectors, which span $\mathcal{K}_m(A, v)$. Then find a "tall" QR-factorization of $K = V_m R_m$; this produces an orthogonal basis $V_m = [v_1, \dots, v_m]$ for $\mathcal{K}_m(A, v)$.

Use the matrix A generated by poisson2.m (use sparse matrices). Take $N = n^2 = 100$, m = 50, $v = e_1$.

Compute the rank of the matrices *K* and R_m ; do they predict the dimension of $\mathcal{K}_m(A, v)$ correctly? Plot the absolute values of the diagonal elements in *R* on a logarithmic scale.

- 2 Algorithm 6.1 in Saad is implemented in the MATLAB-function arnoldi_gs.m. This algorithm constructs an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ based on a classical Gram–Schmidt procedure. Test this function on the matrix A generated by poisson2.m (use sparse matrices) for different values of m and $N = n^2$. For instance, choose N = 100, $v = e_1$, and m = 10, 20, 30, 40.
 - **a)** Test to what extent the relation $V_m^T A V_m = H_m$ from Proposition 6.5 in Saad is fulfilled. Also check if the vectors v_1, \ldots, v_m really are orthonormal, i.e. check whether $V_m^T V_m = I_m$.
 - **b**) Modify the function arnoldi_gs.m such that it uses modified Gram–Schmidt. Repeat the experiments from the previous question.

Hint: plot the norms of the columns of the matrices $V_m^T V_m - I_m$, $AV_m - V_{m+1}\bar{H}_m$, $V_m^T AV_m - H_m$, vs. i = 1, ..., m

- 3 Implement Householder reflection-based Arnoldi iteration arnoldi_h.m in Matlab with the same interface as arnoldi_gs.m (see Algorithm 6.3 in Saad). Repeat the numerical experiment of the exercise 2a) and compare the results.
- 4 (≈Exercise 6.8 in Saad.) Compute the matrices V_m , H_m , m = 1,...,5 resulting from the application of Arnoldi process to

$$A = \begin{pmatrix} & & & 1 \\ 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{pmatrix}, \qquad b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \qquad \text{and} \qquad x_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

Compute the FOM iterates y_m , x_m , m = 1, ..., m (when possible).