

- 1 Consider a system of equations Ax = b with a non-singular matrix $A \in \mathbb{R}^{n \times n}$. Let $A = A_1 A_2$ be a matrix splitting of A with det $A_1 \neq 0$. We will use a matrix-splitting algorithm as a preconditioner M for a Krylov algorithm, that is, $y = M^{-1}v$ is computed by running the matrix-splitting algorithm for Ay = v starting with $y^0 = 0$.
 - a) Suppose that we stop the matrix-splitting algorithm after *v* iterations. Write down the explicit formula for M^{-1} in terms of A_1^{-1} , A_2 .
 - **b)** Let A_1 be a symmetric positive definite matrix. For which $v \ge 1$ can we *guarantee* that M^{-1} will be a symmetric positive definite matrix?
 - **c)** Consider a model tri-diagonal matrix *A* resulting from 3-point finite difference discretization of the Lalpacian in 1D on a regular grid. Prove that left preconditioning based on 1 iteration of Jacobi has no effect on the speed of convergence of the Krylov based methods.
- 2 Exercise 1 demonstrates that aperforming a *fixed* number v of steps of a matrix-splitting algorithm generates a constant preconditioner. That is, applying such a strategy to a vector v is mathematically equivalent to a matrix-vector multiplication $M^{-1}v$ for some fixed matrix M^{-1} .

Show that this is not the case for Krylov-based methods. Namely, let y_1 be a result of applying 1 iteration of the conjugate gradient method to Ay = v, starting with $y_0 = 0$. (We make a blanket assumption that *A* is SPD here.) Show that y_1 cannot be represented as a product $M^{-1}v$, where M^{-1} is independent from v, if *A* has at least two distinct eigenvalues.

3 Consider a 2 × 2 real matrix

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}$$

Find the left (B_L) and right (B_R) sparse approximate inverses A, which has the same sparsity pattern as A. That is, solve numerically the least squares problems

$$\min_{B_L} \frac{1}{2} \|B_L A - I\|_F^2,$$

and

$$\min_{B_R} \frac{1}{2} \|AB_R - I\|_F^2.$$