HOW DESCRIPTIVE ARE GMRES CONVERGENCE BOUNDS?
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Abstract. Eigenvalues with the eigenvector condition number, the field of values, and pseu-
dospectra have all been suggested as the basis for convergence bounds for minimum residual Krylov
subspace methods applied to non-normal coefficient matrices. This paper analyzes and compares
these bounds, illustrating with six examples the success and failure of each one. Refined bounds
based on eigenvalues and the field of values are suggested to handle low-dimensional non-normality.
It is observed that pseudospectral bounds can capture multiple convergence stages. Unfortunately,
computation of pseudospectra can be rather expensive. This motivates an adaptive technique for
estimating GMRES convergence based on approximate pseudospectra taken from the Arnoldi process
that is the basis for GMRES.
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1. Introduction. Popular algorithms for solving large, sparse systems of lin-
ear equations construct iterates that attempt to minimize the residual norm over all
candidates in an affine Krylov subspace whose dimension grows at each step. For
non-symmetric matrices, the GMRES algorithm of Saad and Schultz [33] generates
such optimal iterates. This method, based on the Arnoldi process with its long vector
recurrences, is intractable for problems that converge slowly. Practical algorithms,
such as BICGSTAB or QMR (see, e.g., [18, Ch. 5], [32, Ch. 7]), reduce this com-
putational expense by only approximating the optimality property. It is tough to
characterize the convergence that results from compromising optimality. The residual
norms cannot be smaller than those produced by GMRES (as the algorithms choose
iterates from the same Krylov subspace), but they can sometimes be related to the
GMRES residual norm (e.g., for QMR [16]). Understanding GMRES convergence,
facilitated by its optimality property, is thus an important step towards convergence
analysis for general algorithms. It can also inform the construction and evaluation of
preconditioners for non-symmetric problems.

Given a system of linear equations Ax = b, with A € C"*" and x,b € C", the
GMRES algorithm [33] iteratively generates solution estimates x; based on an initial
guess xg. The residuals induced by these iterates, ry = b — Axy, satisfy the minimum
residual property,

(1.1) Irkllz = min [[p(A)ro]l2,
PEPy,

p(0)=1

where Py, is the set of polynomials of degree k or less.

What properties of the coefficient matrix A govern convergence? In this paper, we
examine three prominently proposed answers to this question (see [18]): eigenvalues
with eigenvector condition number; the field of values; and pseudospectra. When A
is normal (i.e., it has an orthogonal basis of eigenvectors or, equivalently, it commutes
with its adjoint), convergence can be accurately bounded using the eigenvalues alone.
This is not the case for non-normal matrices, as the construction of Greenbaum, Pték,
and Strako§ dramatically illustrates [19]. When A is significantly non-normal, the
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sequence of residual norms {||r||2} often exhibits a period of initial stagnation before
converging at a quicker asymptotic rate. The bounds we study here essentially differ
from the standard eigenvalue-only bounds for normal GMRES in the mechanisms they
use to predict the duration of this transient period of convergence.

We describe three standard GMRES convergence bounds in Section 2. These
characterizations can be misleading when non-normality is only associated with a few
eigenvalues (e.g., several nearly aligned eigenvectors orthogonal to all other eigen-
vectors). To circumvent this, we apply spectral projectors to modify the traditional
formulations. This strategy bounds GMRES convergence using the condition numbers
of individual eigenvalues, and leads to a flexible generalization of the field of values
bound. In Section 3, we present six examples to illustrate that the three standard
bounds can each be tricked into dramatic overestimates, but each can also be rather
descriptive. The bounds are also compared via the analytic relationships between the
eigenvectors, field of values, and pseudospectra. The examples highlight a strength
of pseudospectral bounds: convergence rates based on different pseudospectral sets
can accurately describe different phases of convergence. Unfortunately, the cost of
pseudospectral computation makes this bound rather expensive for large, practical
problems. This motivates our Section 4, where we suggest an alternative that leads to
GMRES convergence estimates at a lower computational expense based on approx-
imate pseudospectra taken from data generated by the Arnoldi process within the
standard GMRES implementation.

Though we are implicitly interested in a linear system with a specific initial resid-
ual, all the analysis described here first employs the inequality

(1.2) lIrkllz < min [[p(A)|l2 [Iroll2,
PEPY

p(0)=1

and then studies ||p(A)||> independently of rg. This leads to upper bounds for worst
case GMRES convergence. With a carefully crafted example, Toh proved that this
inequality can be arbitrarily misleading for non-normal matrices [35]. There may
be no vector rg € C" for which ||[p(A)l|2 characterizes ||rg||2/]|rol|2 at iteration k.
Examples of this extreme behavior are thought to be rare in practice [34, §3.6] and
thus we are typically satisfied with the inequality (1.2) and the general analysis of
llp(A)]]2 that follows from it.

2. Three Convergence Bounds and Variations. In this section, we derive
three familiar convergence bounds for GMRES, based on eigenvalues with the eigen-
vector condition number, the field of values, and pseudospectra. These bounds all fail
to accurately describe convergence when non-normality is primarily associated with
just part of the spectrum. This motivates the use of spectral projectors to develop
localized versions of these bounds that can be sharper than the traditional versions.

2.1. Eigenvalues with Eigenvector Conditioning. The first convergence
bound suggested for GMRES predicts convergence at a rate determined by the set
of eigenvalues of A, denoted A(A). If A is normal, A(A) determines convergence.
Non-normality may delay the onset of convergence at this spectral rate; to account
for such stagnation, this bound scales the spectral convergence prediction by the con-
dition number of the matrix having the eigenvectors of A as its columns [10],[33].
Provided that A is diagonalizable, A = VAV ™!, we have

Irll2 = min-{|p(A)ro]l> < IVP(A) V|2 [Iroll2,

pr(0)=1
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implying the bound

[rellz
EV V) min max
(EV) ol = #(V) min AeA(A)| PN
p(0)=1
Here, k(V) = [|V]|2 [[V~Y|2 is the 2-norm condition number of the eigenvector ma-

trix V. If A is normal, then (V) = 1; if, in addition, the eigenvalues are real,
then (EV) reduces to the standard convergence bound for MINRES [13]. If A is
non-normal, then (V) > 1 and determining the optimal value of (V) can be a chal-
lenge [20]; this task is further complicated if A has repeated eigenvalues. Throughout
this work, the columns of V have unit 2-norm; provided each eigenvalue of A is sim-
ple, k(V) with this scaling can be no larger than 1/n times the optimal value, where
n is the matrix dimension [43].

Typically, the polynomial minimization in (EV) predicts a linear asymptotic con-
vergence rate, and (V) reflects the non-normality of the matrix A. Since GMRES
residual norms necessarily form a non-increasing sequence, a large x(V) implies that
the bound (EV) will only possibly be descriptive for latter iterations. Even then, it
can be grossly inaccurate. For example, (V) will be large if only two eigenvectors
are nearly aligned, or if all eigenvectors are. In the former case, the bound usually
fails to predict convergence, while it may be more appropriate in the latter case. This
is illustrated in Examples B and E of Section 3.

The bound (EV) can be sharpened to get around this difficulty by considering
the conditioning of individual eigenvalues. Suppose A € A(A) is simple with left and
right eigenvectors u and v respectively. Then the condition number of A [44, §2.8] is

_ lallz (vl

Using these condition numbers leads to a bound that can be much sharper than (EV).
THEOREM 2.1. Suppose every eigenvalue \j of A is simple. Then for any p € Py,

(2.1) Ip(A)]]2 < Z

Proof. Since A has simple eigenvalues, it is diagonalizable, A = VAV L. Let
{u;}7_, be the left eigenvectors (u} is the jth row of V=) and {v;}7_, the corre-
sponding right eigenvectors (columns of V), with A;; = A;. Then

le )Hvjiugll2.

The result follows from noting that since ujv; = 1 by construction, [[v;ujf|ls =
gl ¥ 2 = [z 1511/ [ivs] = K Oy). O

Notice that the quantity on the right of equation (2.1) is simply the 1-norm of
p(A)r where r; = k(\;). Norm equivalence reduces this problem to a conventional
GMRES problem involving a normal matrix, but with a very special right hand side.

COROLLARY 2.2. Definer € C" by rj = k()\;j). Then

Ip(A)lz = [[VP(A) V]2 =

V]J

llrg |2
llroll2

(EV') < min [[p(A)2 < v/n min [|p(A)r|>.
PEPY PEPY

p(0)=1 pr(0)=1
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The jth component of r will be large if A; is ill-conditioned. If some eigenvalues
are much better conditioned, GMRES applied to A with this r will focus on the largest
entries first, leading to more rapid convergence than one would expect for a typical
initial residual of similar magnitude. Figure 4.3 shows the ability of (EV’) to describe
convergence for a highly non-normal matrix from a convection—diffusion problem.

Non-normality is closely related to eigenvalue instability [40], which can compli-
cate the computation of A(A) and (V). This motivates us to look for more stable
convergence bound formulations.

2.2. Field of Values. Recently, the field of values has garnered interest as an
alternative foundation for GMRES bounds. The field of values, or numerical range,
is the set of all Rayleigh quotients,

x*Ax

W(A)E{ — ‘XEC”,X#O},

and the largest magnitude of a point in W (A) is called the numerical radius, u(A) =
max.cw(a)|2|. The field of values is always a convex set containing A(A). It is
computationally more attractive than the eigenvalues and eigenvectors because it is
not sensitive to perturbations and can be effectively estimated even for large, sparse
matrices using, for example, techniques introduced by Braconnier and Higham [3].
Eiermann has recently developed GMRES bounds based on the field of values,
provided 0 ¢ W (A) [7],[8]. Note that for any A, the matrix 2-norm is bounded by
twice the numerical radius, ||All2 < 2u(A) (see, e.g., [24, Ch. 1]), implying that for
any p € Py, |[p(A)||2 can be bounded by 2u(p(A)). Kato’s field of values mapping
theorem [26] ensures that p(p(A)) < max.cw(a) [p(2)], thus giving the bound

Iellz 9 nin max Ip(2)]-

(FOV) <
||I‘0||2 pEP 2EW(A)
p(0)=1

Eiermann and Ernst have recently proposed a different field of values bound
involving W (A1) [9], but we focus here on the more accessible statement (FOV).
Several limitations of this bound are clear from the start. Suppose that W (A) contains
points far from the eigenvalues due to high non-normality associated with a low-degree
invariant subspace of A. Then a matrix polynomial p(A) may well annihilate the non-
normal portion of A, leaving Kato’s inclusion W (p(A)) C p(W(A)) rather slack. As
the constant term in (FOV) is small and the approximation problem on a convex
region predicts asymptotic linear convergence (see equation (2.5)), the bound (FOV)
cannot, be accurate for iterations that initially stagnate before converging at a more
rapid asymptotic rate. This behavior is observed by Higham and Trefethen in the
context of matrix powers [22], and identified by Ernst in the context of GMRES
applied to convection—diffusion problems [12], as we see in Section 4.1.

Another drawback of this approach is its requirement that 0 ¢ W (A), which rules
out indefinite problems. This approach also suffers from outlying eigenvalues, which
can artificially stretch the critical convergence region. We address these problems by
working with projectors onto invariant subspaces of A. Partition the spectrum of A
into disjoint sets A;, such that A(A) = UA;. Define the spectral projector
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where I'; is the union of Jordan curves containing the eigenvalues A; in their collective
interior, but not enclosing any other eigenvalues. Then P; is a projector onto the
invariant subspace of A associated with the eigenvalues A; (see, e.g., [27, §1.5.3]).

THEOREM 2.3. Let {A;}72, be a partition of A(A) into m disjoint sets. For each
1 < j <m, let P; be the spectral projector onto the invariant subspace associated with
Aj, and let the columns of Unxrank(P )
for any polynomial p € Py,

be an orthonormal basis for Ran P;. Then

m
Ip(A)l2 < D 1IPll2 [Ip(U; AU ) lo-
j=1

Proof. Note that II; = U;U7 is the orthogonal projector onto Ran Pj, an in-
variant subspace of A. We apply two important identities for spectral projectors:
Z;nzl P; =T and ||AP;||» = ||AIL;P;||> (see, e.g., [27, §1.5.3],[31, §IIL.1]). Substitut-
ing the first identity into ||p(A)]|2 yields

m m
<Y (APl = > |ITL; p(A) TPy |
2 j=1 j=1

(2.2) < Z”HJP I |2 [P l2-

Ip(A) s = Hp(A> ij

Notice that for each j, [Tp(A)IL 2 = [p(ILATL)[l> = [|U; p(U5AU,) Us]l, <
lp(U5AU;)||2. This combines with (2.2) to complete the proof. |

This theorem provides a natural tool for transferring between global statements,
such as (EV), and localized statements like (EV'). In the former case, Theorem 2.3
is vacuous since the spectrum is partitioned into a single set; in the latter case,
Theorem 2.3 reduces to Theorem 2.1, as each set A; is taken as a single eigenvalue
and thus ||P;|l2 = k(A;). In summary, the cost of localizing non-normality is the
introduction of the spectral projector norm.

Theorem 2.3 can be combined with the analysis leading to the bound (FOV) to
provide a field of values analog to (EV').

COROLLARY 2.4. Partition the eigenvalues A(A) into disjoint sets {A;}7, as
before, with the orthogonal columns of each U; spanning the invariant subspace of A
associated with Aj. Then

[lrell2

(FOV')
llroll2

< 2 a P .
< r(mn Ip(A)]l2 < r(n)ln Z 5o, 1Pl lp(2)]
»(0 p(0)=1

Provided one is willing to localize sufficiently, (FOV') is applicable to a wide range
of matrices, including all matrices with only simple eigenvalues. Some matrices are
still beyond the reach of this field of values analysis, though, including any sufficiently
non-normal Jordan block.

2.3. Pseudospectra. Pseudospectra provide an alternative stable platform for
GMRES bounds. The e-pseudospectrum [40] is defined by

A(A)={z€C|[(IT-A) 22"}
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an equivalent formulation is A;(A) = {z € C | z € A(A+ E),||E||2 < €}. In an
early application of pseudospectral theory, Trefethen [39] developed GMRES bounds
by working from the Dunford—Taylor integral [27, §1.5.6] for any polynomial p € Py,

(23) p(&) = o [ G- A) e,

2mi Jr
where I is any union of Jordan curves containing A(A) in its interior. For a fixed ¢ > 0,
we can choose the contour I'c to be the boundary of A.(A). (If this isn’t the union
of Jordan curves, we can take I'. to be slightly exterior.) Coarsely approximating the
resolvent norm about I'. yields

1 _ L(T.)
< — — 1 < =
o)l < 5= [ PEIIET=A) M dl] < 52 max 19(G)]

where L£(T';) is the contour length of T'.. When applied to the GMRES problem, this
gives the bound

L(T
fudl < —( ) min max |p(z)|.
Iroll2 = 2me rery 2€AL(A)
p(0)=1

(PSA)

A striking feature of this bound, perhaps not widely appreciated, is that it applies
for different values of €. Moreover, these different values of ¢ may apply at different
stages of the iteration. This is strikingly observed in Figure 3.6. As e shrinks, the
associated pseudospectral sets shrink too, and in that sense the pseudospectra form a
bridge between the field of values and the spectrum [22]. A localized version of (PSA)
is obtained by simultaneously applying different values of ¢ on discrete pseudospec-
tral components in (2.3); unlike (EV') and (FOV'), this does not introduce spectral
projector norms. Pseudospectral calculation is expensive, but improvements to the
naive approach greatly expedite the process; see Trefethen’s recent survey [41]. We
explore an alternative approach in Section 4.

2.4. Computing the Convergence Bounds. With each of the bounds (EV),
(FOV), and (PSA) is associated a constant, defined as

L(T.)

Crv = k(V), Crov = 2, and Chpss(e) = e

The asymptotic behavior of each bound is determined by the associated complex
approximation problem over A(A), W(A), or A:(A).

Let Q@ C C be a compact set without isolated points tightly bounding W (A),
A-(A), or the clustered eigenvalues of A(A)!. The error of the approximation problem,

min ,ep, Max.cq |p(z)|, decreases asymptotically linearly in the polynomial degree k
p(0)=1

(see, e.g., [23, Ch. 16]). With this linear rate is associated a constant, p, the asymptotic
convergence rate of (2. Driscoll, Toh, and Trefethen demonstrate how this constant
can be computed via conformal mapping [5]. When the set is a line segment or a disk,
the rate is simple to compute. For arbitrary polygons, the rate can be computed using
Driscoll’s Schwarz—Christoffel MATLAB toolbox for numerical conformal mapping [4].

'Tf A has finite dimension, A(A) is a discrete point set with no finite asymptotic convergence
rate. If the eigenvalues are clustered, the asymptotic convergence rate of the bounding set Q typically
describes convergence. Outlying eigenvalues don’t affect this convergence rate; see [5] for details.
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More general sets may arise, for example, if A(A) has outliers or for A (A) with
sufficiently small . If each connected component of a multiply connected set is a
polygon on the real axis and is symmetric about the real axis, the rate can still be
computed [11]. More general sets present greater difficulty, and it may in practice be
necessary to bound A(A) or A.(A) with a single over-sized polygon.

To obtain computable convergence bounds, we must relate minimization over 2
with a degree k polynomial p satisfying p(0) = 1 to p*. We are guaranteed that

(2.4) min max |p(z)| > p*
pEPE 2ZEQ
p(0)=1

(see, e.g., [5]), and if Q is a disk, this is sharp. When Q is a segment [a, b] of a line
passing through the origin, shifted and scaled Chebyshev polynomials are optimal. In
this case, the minimax error is bounded above by 2p* and known explicitly for each &
(see, e.g., [32, §6.11]). If Q is convex, Eiermann [6],[8] uses Faber polynomial analysis
based on an approximation theorem of Kévari and Pommerenke [28] to show that

(2.5) in max |p(2)] < —2
- min maxlp(e)| <
p(0)=1

In particular, this bound always applies to the field of values [8]. In other circum-
stances, one can compute the Faber polynomials associated with @ from the confor-
mal map that determines p, and these polynomials will provide an upper bound on

min ,ep, max.cq |p(z)|. To unify notation, we label the rate associated with each of
p(0)=1

the three sets A(A), W(A), and A-(A) as pgyv, prov, and pesa(€).

3. Which Bounds are Useful? In the previous section, we developed the three
standard bounds (EV), (FOV), and (PSA), along with “localized” versions (EV') and
(FOV’). How do these bounds compare to one another? Are they redundant, or
can each provide specific insight? We begin by exploring the analytic relationships
between the sets A(A), W(A), and A.(A), and then turn to concrete examples illus-
trating the relative merits of the three standard bounds.

If the pseudospectra are large, then the field of values and the eigenvalue condition
number must also be large, in the sense defined in the following theorems. The first,
a version of the Bauer—Fike theorem [2],[42], bounds the pseudospectra by (V). The
second relates the pseudospectra to the field of values (see Gustafson and Rao [21,
§4.6]). The third relates the field of values to the eigenvector condition number as a
consequence of the basic inequality pu(A) < ||A|l2. Let A, ={z € C | |z| < r} denote
the disk of radius r.

THEOREM 3.1 (Bauer-Fike). Let A be diagonalizable, A = VAV ™. Then for
any € > 0, A.(A) C A(A) + AL vy

THEOREM 3.2. For anye >0, A.(A) CW(A) + A..

THEOREM 3.3. Let A be diagonalizable, A = VAV ™. Then u(A) < (V) p(A),
where p(A) = maxyep(a) |A| is the spectral radius of A.

Theorems 3.1 and 3.3 are sharp whenever A is normal. Theorem 3.2 is sharp if
A is a multiple of the identity, or if A is a Jordan block in the limit n = oo (see
Example D). For non-normal matrices, all three of these theorems may be weak.

Theorem 3.1 leads to a simple bound on the constant Cpsa(g). Note that A.(A)
is bounded by the union of n disks each with radius ex(V). Choosing I'. to be the
boundary of this union, £(I'.) can be no larger than 2mnex(V), so Cpsa(e) < nk(V).



8 MARK EMBREE

TABLE 3.1
Predicted iterations for the siz examples of Section 3.1.

example (EV) (FOV) (PSA) true iterations
A: all descriptive 1 1 1 1
B: none descriptive 00 00 00 see note 1
C: (EV) wins see note 2
D: (EV) loses 00 1 1 1
(FOV) wins see note 8
E: (FOV) loses 2 00 2 2
F:  (PSA) wins 00 00 2 2
(PSA) loses see note 3

1. 2 +log(2/ToL)/ log(p) iterations, for parameters TOL < 1 and p € (0,1).
2. “(EV) wins” is more involved; details are given in the text.
3. (FOV) can’t dramatically beat (PSA); see the “Non-Example” sections below.

But since A(A) C A-(A), pev < prsale) for all € > 0, and thus (PSA) is only possibly
useful for those values of € with Cpss(e) < £(V).

Similarly, Theorem 3.2 implies that Cpsa(e) — 1 as € — oco. Note that A.(A)
is bounded by the disk centered at 0 with radius u(A) + e. This bounding set gives
the constant Cpsa(e) = 1 + p(A)/e, and the bound follows as € — co. When the
containment A.(A) C W(A) + A, is nearly equality even for small values of €, the
bound (FOV) can be slightly sharper than (PSA), as is seen in Figures 3.1, 3.3,
and 3.4. In cases where the bound in Theorem 3.2 is weak, one often finds that
(FOV) predicts slow, consistent convergence, while (PSA) predicts convergence that
eventually accelerates to a more rapid rate, as in Figures 3.5, 3.6, and 4.2.

3.1. The Examples. The bounds (EV), (FOV), and (PSA) are descriptive in
different situations. We demonstrate with six examples where the bounds succeed
together, fail together, and, in turn, fail and succeed alone. These examples are
summarized in Table 3.1. We only discuss the standard bounds, though in some
instances a localized version would fix the flaw that causes the corresponding standard
bound to fail. It is difficult to show the failure of (PSA) with the simultaneous
success of (EV) or (FOV). Example C, showing success of (EV) with pessimistic
(PSA) bounds, is the least satisfying of our six examples. We also discuss why (FOV)
cannot dramatically outperform (PSA).

In the illustrations that follow, min ,e», ||[p(A)||2 is drawn as a solid line with dots
p(0)=1

at each iteration k. The bound (EV) is drawn as a solid line, (FOV) with a broken
line, and (PSA) with dotted lines for various values of .

e Example A: All descriptive. All bounds accurately describe GMRES con-
vergence for a scalar multiple of the identity,

A=al, aeC)\{0}

Since A is normal with a single eigenvalue, A(A) = W(A) = {a} and A.(A) =
{a}+ A.. The approximation problems in (EV) and (FOV) are on singleton sets, and
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iteration, k

F1G. 3.1. Convergence bounds for a normal matriz with A(A) = [1,2] and dimension n = o0.

thus these bounds predict convergence in one iteration; the associated constants are

Civ = 1 and Cpoy = 2. The pseudospectral bound does as well. The constant term

is Cpsa = 1 independent of ¢ and, with its approximation problem on a disk, (PSA)

predicts min ,ep, |[p(A)|l2 < (¢/a)¥, implying convergence to arbitrary tolerance in a
p(0)=1

single iteration as € — 0.

What happens when A remains normal but A(A) is the positive real interval
[a,b], rather than a single point? For dimension n = oo, (FOV) and (EV) predict
the same rate of convergence, (1/b/a — 1)/(y/b/a + 1), with Cy, = 1 and Cpoy = 2
as before. But now (PSA) becomes slightly less accurate, as A-(A) consists of [a, b]
surrounded by a border of radius €. The constant Cps, now involves a finite length
scale, Cpsa(e) = (b—a)/(me) + 1. Descriptive pseudospectral bounds require balancing
the more accurate convergence rates obtained for small € against the growth of the
constant Cpsy(g). Figure 3.1 illustrates this situation for A(A) =[1, 2].

¢ Example B: None descriptive. As described in Section 2, each bound can
be deceived by low-dimensional non-normality. Example B exploits this shortcoming:

A:(l ff)e;]x, a>1,

where A is a diagonal matrix with uniformly distributed real positive entries in the
positive real interval [a,b]. GMRES requires two iterations to eliminate the highly
non-normal Jordan block, and then convergence depends only on the interval [a,b].
Thus, GMRES can be bounded from above independent of a.

Since A is non-diagonalizable, Cyy = oo and (EV) isn’t helpful. The field of
values grows ever larger with «, with 1+ A,/, € W(A). Consequently, the field of
values bound predicts no convergence when o > 2. Analysis of the pseudospectral
bound is slightly more involved. (PSA) accurately predicts convergence of the Jordan
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block as e — 0 (see Example F), but such values of ¢ lead to large constant terms
associated with [1, 2], the normal eigenvalues of A (as described in Example A). One
can show that Cpss(€) > a/+/€ for all ¢ > 0. For e sufficiently small such that the
component of the pseudospectrum generated by the Jordan block does not intersect
the component associated with A, we have Cpss(¢) > a/+/€ + (b — a)/(we) + 1. This
bound can be made arbitrarily poor by increasing «, and thus in Table 3.1 we say
that (PSA) predicts infinitely many iterations.

This example is essentially an extreme version of the diagonalizable example con-
structed by Greenbaum and Strako§ to demonstrate the failure of the pseudospectral
bound (PSA) [20].

¢ Example C: Only (EV) descriptive. The field of values and pseudospectral
bounds are based on approximation problems on dense sets in the complex plane, and
so the convergence rates predicted by these bounds depend on parts of the spectrum
that may be eliminated at an early stage of iteration. When there are outlier eigen-
values, (EV) may be significantly more descriptive than (PSA) and (FOV) because its
approximation problem is discrete and isolated outliers do not influence pgy. Define

A=6pA, 0<-6<1,

where A is a diagonal matrix with entries uniformly distributed in the positive real
interval [a, b].

Since A is normal, convergence is determined by the spectrum. The bound (EV),
with Cgy = 1, is exact. This convergence can be bounded by the polynomial pi(2) =
(1—2/0)qr—1(2), where gy, is the optimal degree k residual polynomial on the interval
[a,b]. The outlier eigenvalue  near the origin will lead to an initial stagnation [5];
the polynomial p; suggests that this plateau will last no more than

log(6) — log(2d + b)
log(p)

where p = (y/b/a —1)/(y/b/a + 1). Note that this stagnation is not due to non-
normality, as is the case in Example F.

By placing the outlier on the opposite side of the origin from the rest of the spec-
trum, we ensure that 0 € W(A) and thus (FOV) predicts no convergence. (If § were
small and positive, (FOV) would predict non-trivial, but pessimistic, convergence.)
The pseudospectral bound suffers from the fact that it can’t identify 4 as a single
eigenvalue, eliminated at an early stage of convergence. For any finite £, the pseu-
dospectrum about A = § is a disk of radius . The approximation problem on A.(A)
must always incorporate it in the asymptotic bounds. This effect diminishes as ¢ de-
creases, but such small values of € lead to large constants (Cpsa(€) = 2+ (b —a)/(7e)
for n = 00) due to the interval [a,b]. In particular, it is necessary to take € < d to
obtain non-trivial convergence rates.

This is the least analytically compelling of our six examples. In particular, it is
difficult to cleanly describe the convergence rates associated with (PSA). In Figure 3.2,
we illustrate (PSA) for § = 0.01, [a,b] = [1,2], and n = co. This representation of
(PSA) is obtained by underestimating the convergence rate of A.(A), taking instead
the rate associated with the union of two intervals, [§ —¢,d + €] U [a —&,b + ¢]. This
rate can be expressed in terms of elliptic integrals, as described and implemented in
MATLAB by Fischer [13]. The pseudospectral constants are Cpsa(€) = 2+ (b—a)/(7e).

While a single outlier, as presented in this example, may appear to be an easily-
overcome obstacle for the bounds (FOV) and (PSA), the same phenomenon can prove

1+

iterations,
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Fic. 3.2. Convergence bounds for Example C with 6 = 0.01 and n = oco.

more difficult to identify when the outlier consists of a cluster of several eigenvalues,
or if it is non-normal.

¢ Example D: Only (EV) not descriptive. The bound (EV) fails for any non-
diagonalizable matrix. Yet defectiveness alone does not imply high non-normality. For
the present example, consider small perturbations to the identity matrix,

16
1 .
A= ., 0<d< 1.
S
1

This matrix is completely defective for all § # 0, but small values of ¢ exert only the
slightest impact on convergence. Unlike the case of § = 0, there will now be residuals
that require n iterations to exactly converge. In fact, if ry is the nth column of the
identity matrix, Ipsen [25] shows that

Irells _ o /107
3.1 =6 ——.
( ) ||r0||2 1— 52(k+1)

This is nearly the worst case, as min ,cp, ||p(A)]l2 < 6*.
p(0)=1

Since A is non-diagonalizable, (EV) fails to predict convergence. The field of
values is known explicitly for this example, W(A) = 1+ Ajcoq((ny1)-1) [21, §1.3],
leading to the exact formulation of (FOV): min ,ep, ||p(A)|l2 < 2(§cos((1 +n)~1))*.

0

P 1
The pseudospectra are also disks for this example [42], but the radius of these disks
isn’t generally known in closed form. In the limit n — oo, a theorem of Reichel and
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F1G. 3.3. Convergence bounds for Ezample D with 6 =1/2 and n = 32.

Trefethen [30] shows that A.(A) =1+ Ast.. In this limit, the bounds give:

(FOV) = min [|p(A)]; <26°  (PSA): min [[p(A)]> < (1+5/)(5 +¢)*.

pr(0)=1 p(0)=1

In the limit as 6 — 0, both these bounds predict convergence to arbitrary desired
tolerance in a single iteration, though (FOV) is asymptotically sharper for n = oo.
One must balance the size of the (PSA) constant against the accompanying conver-
gence rate, just as for the normal matrix with A(A) = [a, b] discussed in Example A.
Figures 3.3 and 3.4 illustrate this for § = 1/2 with n = 32 and n = oo. For the
“exact” curve, we plot the lower bound given by equation (3.1). The bound (PSA)
is particularly interesting in the finite-dimensional case. In fact, for very small val-
ues of ¢, (PSA) predicts convergence rates that are too quick, associated with large
constants that ensure that bound doesn’t intersect the convergence curve for k < n.

Taking A to be non-diagonalizable makes for a clean example, but it is not neces-
sary. Moving the diagonal entries of A from A to distinct nearby values, one obtains
arbitrarily large values of Cry = (V) and corresponding convergence rates not nec-
essarily descriptive of the observed rates.

¢ Non-Example: Only (FOV) descriptive. Theorem 3.2 indicates that ex-
amples where (FOV) dramatically outperforms (PSA) may be difficult to find. Since
A:(A) C W(A)+ A,, the rate ppsa(€) can only be significantly larger than proy when
this containment is sharp, € is relatively large, and the sets W(A) and A.(A) are near
the origin. In such cases, values of € that yield ppsa(¢) similar to proyv will be associ-
ated with small £ and thus large constant terms Cpsa (). But proximity to the origin
implies that ppoy will predict slow convergence, and the pseudospectral bounds, while
less sharp, will still provide a decent indication of the number of iterations required
to meet the convergence criteria. Taking the non-diagonalizable Example D with §
close to 1 and n = oo yields the most extreme behavior possible.
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F1G. 3.4. Convergence bounds for Ezample D with § =1/2 and n = co.

¢ Example E: Only (FOV) not descriptive. The field of values bound (FOV)
is not descriptive when there is initial stagnation followed by more rapid convergence.
The simplest example of GMRES stagnation at the first iteration occurs for the sym-
metric indefinite matrix
1
()

as described by Saad and Schultz [33]. Since A € €**2, the second iteration gives
exact convergence.

Since A is normal, (EV) is exact, correctly predicting two iterations to solve the
polynomial approximation problem on the discrete set of two eigenvalues. Since W (A)
is the convex hull of A(A), the field of values contains the origin for this example,
W(A) = [-1,1], and thus (FOV) predicts no convergence. The e-pseudospectrum
consists of the union of two disks of radius ¢, each centered at an eigenvalue. Thus,
Chsa(e) = 2 independent of 0 < ¢ < 1. Taking ¢ — 0, (PSA) predicts arbitrarily good
convergence in two iterations.

The bound (FOV) can also fail when A is a non-normal matrix with A;(A) in the
right half plane. The following example, with uniformly ill-conditioned eigenvectors,
is the only case we discuss where x(V) is large and (EV) is descriptive. Let A be
diagonal with eigenvalues uniformly distributed in the interval [1, 2] and define

1 Vi—-6 V1=6§ -+ J1-56
Ve 0 - 0

(32) A=VAV' whereV = VZ T : ,
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and 0 < 0 < 1 is a small positive parameter.

Clearly, these eigenvectors are highly ill-conditioned; looking at the upper left 2 x2
block of V alone shows that (V) > (1 +v/4)/v/d. One can show x(V) = O(n/V5)
asn — ooand 6 - 0. If 0 < § < 1/9, then 0 € W(A) and (FOV) is vacuous;
for particularly small §, the field of values is extremely large. The pseudospectra are
likewise large, but as € is taken small enough such that 0 ¢ A.(A), the bound becomes
increasingly descriptive. This is another case where the inclusion in Theorem 3.2 is
weak for small e.

Figure 3.5 presents the bounds for § = 107® and n = 64. The constant Cr, =
k(V) is obtained by computing the condition number in MATLAB, with the first col-
umn of V multiplied by /n to improve conditioning. The rate pgy is taken from the
optimal polynomial on the interval [1,2]. The pseudospectral bound was determined
for each ¢ by bounding A.(A) by an exterior convex polygon, obtaining the conver-
gence rate through numerical conformal mapping, and then applying the bound (2.5).
The “exact” curve was computed using the semidefinite programming strategy of Toh
and Trefethen [38], as implemented in the MATLAB SDPT3 toolbox [36]. For this
example, random initial residuals do not exhibit the long plateau obtained in bound

on worst case convergence computed from min ,ep, ||p(A)]l2.
p(0)=1

¢ Example F: Only (PSA) descriptive. For the Jordan block in Example D,
the field of values bound (FOV) captured the single convergence rate perfectly. For
the present example, we seek a non-diagonalizable matrix that initially stagnates but
eventually converges more rapidly, making (FOV) misleading. The most extreme
example of this behavior is the matrix

A:(l ‘_f) a>1,
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which featured as a submatrix in Example B. For a > 2, there are right hand sides
for which GMRES makes no progress at the first step. Yet at the second step, there
is exact convergence since A € C?*2,

Since A is non-diagonalizable, Cry = oo and (EV) does not apply. Since the
field of values is a disk centered at 1 with radius a/2, W(A) =14+ A,/, [21, §1.3],
the field of values bound fails to predict convergence for a > 2. The pseudospec-
tral bound, however, captures the exact convergence in two iterations. As & — 0,
A-(A) = 1+ A, sz Forsuch e, Cpsy(e) = a/y/e and (PSA) predicts to leading order
min ,ep, ||p(A)|l2 < a**+1(,/2)k~1. For any fixed finite o, we can make the right hand

0)=1
side of this bound arbitrarily small for & > 2, so we must have exact convergence in
two iterations.
A more interesting example, without reliance on finite dimension, is obtained by

varying the entries in the first upper diagonal of a Jordan block,

L g
1

— @

for constant 3 > 0. Reichel and Trefethen called a closely related example the “inte-
gration matrix” [30].

Since A is non-diagonalizable, the bound (EV) can’t be usefully applied. Both
the field of values and the pseudospectra of A are circular disks [42]. If n > 2 and
B > 2, then 0 € W(A). For such values of 8, (FOV) can only predict stagnation.
Driscoll, Toh, and Trefethen discuss this particular example, arguing that pseudospec-
tral bounds may be descriptive. As motivation, they note that the pseudospectra
shrink rapidly as € decreases. For small e, W(A) is much larger than A.(A), and thus
(PSA) predicts much faster convergence rates than (FOV).

Figure 3.6 shows the bounds for 3 = 5/2 and n = 64. The exact curve was
computed using the technique of Toh and Trefethen [38]. The pseudospectral bounds
were obtained by numerically determining the radius of each pseudospectral boundary.
Increasing the dimension n doesn’t significantly alter the pseudospectra for the values
of € shown here, as such an extension is a small perturbation of the direct sum of the
original matrix with another integration matrix having smaller pseudospectra.

e Non-Example: Only (PSA) not descriptive. Success of (EV) and (FOV)
together implies that W(A) and A(A) determine similar asymptotic convergence
rates. There can be little initial stagnation if (FOV) is descriptive, and thus (V)
must be small if both bounds are to be descriptive. Thus, A must be normal (or nearly
s0). Theorems 3.1 and 3.2 then assure us that A.(A) cannot be much larger than
A(A) and W(A), so it is impossible to get an example where (PSA) performs dramat-
ically worse than (EV) and (PSA). The closest one can come are normal matrices with
A(A) = [a,b], where a is close enough to the origin to makes the pseudospectrum’s
rim of radius & about the spectrum significant even for small ¢, leading to an extreme
version of Figure 3.1.

3.2. Summary of the Examples. Let us collect some of the points highlighted
in these examples.
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F1G. 3.6. Convergence bounds for the integration matriz (8.3) with a = 5/2 and n = 64.

(EV) This bound worked perfectly for normal matrices and for (3.2), where all
eigenvalues were uniformly non-normal, but failed when the matrix was non-
diagonalizable or the non-normality was primarily associated with only part
of the spectrum.

(FOV) The field of values performed well when only one convergence stage was ob-
served, as in Examples A and D. Its primary advantages over (PSA) for these
examples was sharpness (Figures 3.1, 3.3, and 3.4) and ease of computability.
In the presence of transient stagnation, (FOV) failed, as in Examples B, C,
E, and F.

(PSA) The pseudospectral bound inherits properties of both (EV) and (FOV), but
can also capture interesting information between these extremes, as seen in
Example F. The primary flaw in (PSA), exploited in Examples B and C, is
its inability to recognize the finiteness of the spectrum, thus overestimating
the influence of outliers eliminated at an early stage of convergence.

In the next section, we see how pseudospectra can yield convergence estimates during
an iteration, and see how the bounds we have surveyed here apply to a matrix derived
from a convection—diffusion problem.

4. Adaptive Pseudospectral Bounds. Often the pseudospectra bound pro-
vides a good indication of convergence behavior, especially when a range of values for
¢ are considered. The expense of full pseudospectral computation limits this bound’s
wide applicability, though. In this section, we see that information constructed within
the GMRES iteration by the Arnoldi orthogonalization can give descriptive pseu-
dospectral convergence estimates.

The first k& < n steps of the Arnoldi process [1] build an orthonormal basis
{v1i,..., Vg1 } for the Krylov subspace Kj41 (A, ro) = span{ry, Ary,..., A¥ry}. This
construction gives a partial upper Hessenberg decomposition of A, such that if V, =
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(Vi,...,vr) € C**F then
(4.1) AVk = Vk+1ﬁk and V;;AVk = Hk,

where H;, € C**1%* is upper Hessenberg and H;, € C*** consists of the first k& rows
of Hy, (see, e.g., [32, §6.3]). We take the subdiagonal entries of H, to be non-negative.

Toh and Trefethen [37] show that the pseudospectra of Hy and Hj can well-
approximate those of A.(A) even when k < n. They define the pseudospectra of
a rectangular matrix using the pseudoinverse, implying that z € A.(H}) provided
or(2I — Hy) < ¢, where I is the k x k identity matrix augmented by a row of zeros
and oy, is the kth largest singular value. With this definition, the relationship between
A.(Hg), A.(Hg), and A.(A) can be quantified.

THEOREM 4.1. Suppose V; AV, = H and AV, = Vi1 Hy. Then

(1) Aa(ﬁl) g AE(EQ) g e g Aa(ﬁn—l) g AE(Hn) = AE‘(A)
(2) A (Hy) C Az(Hy) C Az(A), where £ =& + hgy1 k-

Proof. Part (1) was proved by Toh and Trefethen; it follows immediately from
noting that o (2I — Hg) > 041 (21 — Hy1). For part (2), suppose that z € A.(Hy).
Observe that oy (21 — Hy) < ox(2I — Hg) + hgy1x < € + hgy1k, where the first
inequality follows Horn and Johnson’s Theorem 3.3.16 [24]. Applying (1) to this
bound completes the proof. O

Since the pseudospectra of H; and H; approximate those of A, it is natural to
consider the bound (PSA) with A replaced by Hj, or H;. The resultant expression
is no longer a convergence bound, but only an estimate. We have

rerlla < £(T:) .
ol ~ min max |p(z)],
0ll2 e pp(ﬁ)?’;l z€EA:(A)

where T, is a Jordan curve enclosing A.(Hy) or A, (Hy,).

What value of € is relevant at a specific iteration? The following bounds, while
not necessarily sharp, indicate where GMRES is focusing its energy.

PROPOSITION 4.2. For k < n, the eigenvalues of Hy, (Ritz values) are contained
in the e-pseudospectrum of A for € = hyy1,. If Hy is nonsingular, the roots of the
GMRES residual polynomial (harmonic Ritz values [15], [17]) are contained in the
e-pseudospectrum of A for € = by, + hi+17k/ak(Hk).

Proof. We prove the first part by constructing the specific perturbation matrix
E = —hjy1xVit1e; V. Then, from (4.1),

(A +E)Vy, = ViHy + hip1 g virie; + EVy,
= Vka7

where e;, € CF is the kth column of the k x k identity matrix. This implies that V7, is
an exact invariant subspace of A + E, and thus A(H;) C A(A + E) C A.(A), where
e = by > [|E|.

The second part follows from the analysis of Goossens and Roose [17]. They
characterize the harmonic Ritz values as the eigenvalues of (Hy + h? +1..frey), where
fi = H, "e;. Defining the perturbation E = (th%+17kfke,‘; — hiy1,kVet1€)) Vi,
it follows from (4.1) that (A + E)Vy = Vi (Hy + hj, ifre}), and thus A(Hj +
Pty ifeer) € A(A + E) C A-(A), where [[Ell2 < & = hiyrp + by 1/ Omin(Hi).
O
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GMRES convergence estimates derived from A(Hj) have several applications.
If k is taken to be small, the estimate may give an indication of GMRES behavior
at future iterations. If k is larger (e.g., the k that satisfies the GMRES convergence
criterion), one may obtain a good description of worst case convergence over all initial
residuals. This estimate depends on the particular initial residual ry that determines
the entries of Hy. If ry is deficient in all eigenvector directions associated with a
particular eigenvalue, that eigenvalue cannot influence Hj, nor the estimates derived
from it. If ro only has a small component in a certain eigenvector direction, that
component may not exert much influence early iterations (and Hy for small k), but
become significant at later iterations.

Toh and Trefethen observe qualitative links between the pseudospectra and the
GMRES iteration polynomial [34], [38]. A deeper quantitative understanding of this
relationship would be an important step toward appreciating the ability of pseu-
dospectral bounds to describe GMRES convergence, the value of & for which A;(A) is
relevant for each iteration, and the merits of adaptive strategies, like the one described
here, to capture significant features of convergence behavior.

Figure 4.1 illustrates adaptive estimates drawn from the integration matrix with
n = 64 and = 5/2. In Figure 3.6, we saw that the bound (PSA) was ideal for
this example, and thus hope these Arnoldi estimates would perform similarly well.
The estimates shown were here are based on a random initial residual with entries
drawn from the standard normal distribution. Taking estimates at iteration k = 4
gives some hint of the quick convergence that follows; when k& = 12, the pseudospectra
of H;, match those of A for the relevant values of € and characterize the worst case
convergence curve. The curve labeled ||rg||2/]|ro||2 is the convergence obtained for
this particular initial residual, with an asterisk marking the iteration that yields the
convergence estimate.

4.1. A Practical Example. We illustrate the use of this technique, and the
bounds (EV), (EV'), (PSA), and (FOV), for a model problem from fluid dynamics. Let
A be the matrix generated by a streamline upwinded Petrov—Galerkin finite element
discretization of the two-dimensional convection—diffusion equation,

—vAu+w-Vu=f on Q=]10,1] x[0,1],
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Fic. 4.2. Convergence bounds for the convection—diffusion problem with N = 13.

with diffusion » = 0.01, constant vertical wind w = (0,1), and Dirichlet boundary
conditions that induce an interior layer and a boundary layer. The solution is ap-
proximated with bilinear finite elements on a regular square grid with N unknowns
in each coordinate direction, yielding a matrix A of dimension n = N?2. This problem
is discussed by Fischer et al. [14]; we apply the upwinding parameter they suggest.
This parameter value leads to good approximate solutions to the partial differential
equation, but the corresponding matrix is highly non-normal. Its eigenvalues, though
very sensitive to perturbations, are known analytically for this special wind direc-
tion [14]. These eigenvalues fall on N lines in the complex plane with constant real
part, with NV eigenvalues per line. The eigenvalues with largest real part are the most
ill-conditioned. The coefficient matrix is non-diagonalizable in the limit N — oo, and
the eigenvector matrix condition number is very large even for modest values of N.

The high non-normality of A leads early iterations of GMRES to stagnate for
typical initial residuals. Ernst investigated the field of values bound (FOV) for this
matrix [12]. Since A results from a coercive finite element discretization, W(A) is
contained in the open right half plane and (FOV) applies non-trivially. As expected
from the initial stagnation, this bound is descriptive at early iterations but asymptoti-
cally inaccurate. As in Examples E and F, (PSA) does better. Though it is somewhat
pessimistic asymptotically, it accurately captures the end of the initial stagnation, a
feature that eludes the other two bounds.

Figure 4.2 illustrates (EV), (FOV), and (PSA) for N = 13. The eigenvector
matrix V is known analytically [14]. When each column of V has unit 2-norm, we
compute £(V) & 4.6 x 10'°. We bound pgy by the convergence rate associated with
the convex hull of the eigenvalues of A; this agrees with the observed asymptotic
convergence rate, though Cgy is much too large. The bound (FOV) gives proy =~
0.968. The pseudospectral bound leads to better convergence rates; we compute
these rates by calculating the convergence rate of an approximate convex hull of
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F1G. 4.3. Convergence bound (EV') for the convection—diffusion problem with N = 13.

A:(A) and applying the convergence bound for convex sets (2.5). The exact curve
was computed using the techniques of Toh and Trefethen [38], and we compare it to
GMRES convergence for an initial residual derived from boundary conditions that
induce an internal layer and a boundary layer.

How does the bound (EV') perform in this situation? Though there aren’t any
normal eigenvalues, the degree of eigenvalue ill-conditioning increases markedly from
those with smallest real part to those with largest real part. Figure 4.3 illustrates
that (EV') handles this situation admirably; asymptotically, (EV') is more accurate
than the three standard bounds. For this example, the eigenvalue condition numbers
were computed from analytic formulas for left and right eigenvectors, and (EV') was
calculated in quadruple precision arithmetic.

We test the pseudospectral estimates described earlier in this section for NV = 13
with the same initial residual described above. The adaptive estimates taken during
the initial stagnation give little hint of future convergence behavior; the approximate
pseudospectra do not improve much from iteration to iteration during these iterations.
For k = 13, at the onset of more rapid convergence, A.(Hj) ~ A.(A) for ¢ > 10~*
and one gets an indication of the improved convergence to come. By the time the
convergence criterion is satisfied at k = 26, A.(Hy) &~ A.(A) for those values of €
relevant to the bound (PSA). Figure 4.4 shows these convergence estimates for k = 13
and k = 26.

5. Summary. We have seen the relative merits of convergence bounds based on
eigenvalues (with the eigenvector condition number), the field of values, and pseu-
dospectra. In particular, these bounds have distinct weaknesses that indicate situ-
ations in which one bound may be preferred over the others. The standard bounds
are global statements that can be refined; for (EV') and (FOV') this localization
introduces spectral projector norms. Pseudospectra provide a convenient tool for
transferring between the eigenvalues and the field of values, but they can be expen-
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Fic. 4.4. Adaptive convergence bounds for the convection—diffusion matriz for k = 13 on the
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sive to compute. Approximate pseudospectra drawn from the Arnoldi process yield
convergence estimates at a fraction of the cost of full pseudospectral computation.
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