
HOW DESCRIPTIVE ARE GMRES CONVERGENCE BOUNDS?MARK EMBREE�Abstract. Eigenvalues with the eigenvector condition number, the �eld of values, and pseu-dospectra have all been suggested as the basis for convergence bounds for minimum residual Krylovsubspace methods applied to non-normal coe�cient matrices. This paper analyzes and comparesthese bounds, illustrating with six examples the success and failure of each one. Re�ned boundsbased on eigenvalues and the �eld of values are suggested to handle low-dimensional non-normality.It is observed that pseudospectral bounds can capture multiple convergence stages. Unfortunately,computation of pseudospectra can be rather expensive. This motivates an adaptive technique forestimating GMRES convergence based on approximate pseudospectra taken from the Arnoldi processthat is the basis for GMRES.Key words. Krylov subspace methods, GMRES convergence, non-normal matrices, pseudospec-tra, �eld of valuesAMS subject classi�cations. 15A06, 65F10, 15A18, 15A60, 31A151. Introduction. Popular algorithms for solving large, sparse systems of lin-ear equations construct iterates that attempt to minimize the residual norm over allcandidates in an a�ne Krylov subspace whose dimension grows at each step. Fornon-symmetric matrices, the GMRES algorithm of Saad and Schultz [33] generatessuch optimal iterates. This method, based on the Arnoldi process with its long vectorrecurrences, is intractable for problems that converge slowly. Practical algorithms,such as BiCGSTAB or QMR (see, e.g., [18, Ch. 5], [32, Ch. 7]), reduce this com-putational expense by only approximating the optimality property. It is tough tocharacterize the convergence that results from compromising optimality. The residualnorms cannot be smaller than those produced by GMRES (as the algorithms chooseiterates from the same Krylov subspace), but they can sometimes be related to theGMRES residual norm (e.g., for QMR [16]). Understanding GMRES convergence,facilitated by its optimality property, is thus an important step towards convergenceanalysis for general algorithms. It can also inform the construction and evaluation ofpreconditioners for non-symmetric problems.Given a system of linear equations Ax = b, with A 2 Cn�n and x;b 2 Cn, theGMRES algorithm [33] iteratively generates solution estimates xk based on an initialguess x0. The residuals induced by these iterates, rk = b�Axk, satisfy the minimumresidual property, krkk2 = minp2Pkp(0)=1 kp(A)r0k2;(1.1)where Pk is the set of polynomials of degree k or less.What properties of the coe�cient matrixA govern convergence? In this paper, weexamine three prominently proposed answers to this question (see [18]): eigenvalueswith eigenvector condition number; the �eld of values; and pseudospectra. When Ais normal (i.e., it has an orthogonal basis of eigenvectors or, equivalently, it commuteswith its adjoint), convergence can be accurately bounded using the eigenvalues alone.This is not the case for non-normal matrices, as the construction of Greenbaum, Pt�ak,and Strako�s dramatically illustrates [19]. When A is signi�cantly non-normal, the�Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD,UK (embree@comlab.ox.ac.uk). 1



2 MARK EMBREEsequence of residual norms fkrkk2g often exhibits a period of initial stagnation beforeconverging at a quicker asymptotic rate. The bounds we study here essentially di�erfrom the standard eigenvalue-only bounds for normal GMRES in the mechanisms theyuse to predict the duration of this transient period of convergence.We describe three standard GMRES convergence bounds in Section 2. Thesecharacterizations can be misleading when non-normality is only associated with a feweigenvalues (e.g., several nearly aligned eigenvectors orthogonal to all other eigen-vectors). To circumvent this, we apply spectral projectors to modify the traditionalformulations. This strategy bounds GMRES convergence using the condition numbersof individual eigenvalues, and leads to a exible generalization of the �eld of valuesbound. In Section 3, we present six examples to illustrate that the three standardbounds can each be tricked into dramatic overestimates, but each can also be ratherdescriptive. The bounds are also compared via the analytic relationships between theeigenvectors, �eld of values, and pseudospectra. The examples highlight a strengthof pseudospectral bounds: convergence rates based on di�erent pseudospectral setscan accurately describe di�erent phases of convergence. Unfortunately, the cost ofpseudospectral computation makes this bound rather expensive for large, practicalproblems. This motivates our Section 4, where we suggest an alternative that leads toGMRES convergence estimates at a lower computational expense based on approx-imate pseudospectra taken from data generated by the Arnoldi process within thestandard GMRES implementation.Though we are implicitly interested in a linear system with a speci�c initial resid-ual, all the analysis described here �rst employs the inequalitykrkk2 � minp2Pkp(0)=1 kp(A)k2 kr0k2;(1.2)and then studies kp(A)k2 independently of r0. This leads to upper bounds for worstcase GMRES convergence. With a carefully crafted example, Toh proved that thisinequality can be arbitrarily misleading for non-normal matrices [35]. There maybe no vector r0 2 Cn for which kp(A)k2 characterizes krkk2=kr0k2 at iteration k.Examples of this extreme behavior are thought to be rare in practice [34, x3.6] andthus we are typically satis�ed with the inequality (1.2) and the general analysis ofkp(A)k2 that follows from it.2. Three Convergence Bounds and Variations. In this section, we derivethree familiar convergence bounds for GMRES, based on eigenvalues with the eigen-vector condition number, the �eld of values, and pseudospectra. These bounds all failto accurately describe convergence when non-normality is primarily associated withjust part of the spectrum. This motivates the use of spectral projectors to developlocalized versions of these bounds that can be sharper than the traditional versions.2.1. Eigenvalues with Eigenvector Conditioning. The �rst convergencebound suggested for GMRES predicts convergence at a rate determined by the setof eigenvalues of A, denoted �(A). If A is normal, �(A) determines convergence.Non-normality may delay the onset of convergence at this spectral rate; to accountfor such stagnation, this bound scales the spectral convergence prediction by the con-dition number of the matrix having the eigenvectors of A as its columns [10],[33].Provided that A is diagonalizable, A = V�V�1, we havekrkk2 = minp2Pkp(0)=1 kp(A)r0k2 � kVp(�)V�1k2 kr0k2;



GMRES CONVERGENCE BOUNDS 3implying the bound(EV) krkk2kr0k2 � �(V) minp2Pkp(0)=1 max�2�(A) jp(�)j:Here, �(V) � kVk2 kV�1k2 is the 2-norm condition number of the eigenvector ma-trix V. If A is normal, then �(V) = 1; if, in addition, the eigenvalues are real,then (EV) reduces to the standard convergence bound for MINRES [13]. If A isnon-normal, then �(V) > 1 and determining the optimal value of �(V) can be a chal-lenge [20]; this task is further complicated if A has repeated eigenvalues. Throughoutthis work, the columns of V have unit 2-norm; provided each eigenvalue of A is sim-ple, �(V) with this scaling can be no larger than pn times the optimal value, wheren is the matrix dimension [43].Typically, the polynomial minimization in (EV) predicts a linear asymptotic con-vergence rate, and �(V) reects the non-normality of the matrix A. Since GMRESresidual norms necessarily form a non-increasing sequence, a large �(V) implies thatthe bound (EV) will only possibly be descriptive for latter iterations. Even then, itcan be grossly inaccurate. For example, �(V) will be large if only two eigenvectorsare nearly aligned, or if all eigenvectors are. In the former case, the bound usuallyfails to predict convergence, while it may be more appropriate in the latter case. Thisis illustrated in Examples B and E of Section 3.The bound (EV) can be sharpened to get around this di�culty by consideringthe conditioning of individual eigenvalues. Suppose � 2 �(A) is simple with left andright eigenvectors u and v respectively. Then the condition number of � [44, x2.8] is�(�) � kuk2 kvk2ju�vj :Using these condition numbers leads to a bound that can be much sharper than (EV).Theorem 2.1. Suppose every eigenvalue �j of A is simple. Then for any p 2 Pk,kp(A)k2 � nXj=1 �(�j) jp(�j)j:(2.1)Proof. Since A has simple eigenvalues, it is diagonalizable, A = V�V�1: Letfujgnj=1 be the left eigenvectors (u�j is the jth row of V�1) and fvjgnj=1 the corre-sponding right eigenvectors (columns of V), with �jj = �j . Thenkp(A)k2 = kVp(�)V�1k2 = nXj=1 p(�j)vju�j2 � nXj=1 jp(�j)j kvju�jk2:The result follows from noting that since u�jvj = 1 by construction, kvju�jk2 =kujk2 kvjk2 = kujk2 kvjk2=ju�jvj j = �(�j).Notice that the quantity on the right of equation (2.1) is simply the 1-norm ofp(�)r where rj = �(�j). Norm equivalence reduces this problem to a conventionalGMRES problem involving a normal matrix, but with a very special right hand side.Corollary 2.2. De�ne r 2 Cn by rj = �(�j). Then(EV0) krkk2kr0k2 � minp2Pkp(0)=1 kp(A)k2 � pn minp2Pkp(0)=1 kp(�)rk2:



4 MARK EMBREEThe jth component of r will be large if �j is ill-conditioned. If some eigenvaluesare much better conditioned, GMRES applied to � with this r will focus on the largestentries �rst, leading to more rapid convergence than one would expect for a typicalinitial residual of similar magnitude. Figure 4.3 shows the ability of (EV0) to describeconvergence for a highly non-normal matrix from a convection{di�usion problem.Non-normality is closely related to eigenvalue instability [40], which can compli-cate the computation of �(A) and �(V). This motivates us to look for more stableconvergence bound formulations.2.2. Field of Values. Recently, the �eld of values has garnered interest as analternative foundation for GMRES bounds. The �eld of values, or numerical range,is the set of all Rayleigh quotients,W (A) � � x�Axx�x ��� x 2 Cn; x 6= 0� ;and the largest magnitude of a point in W (A) is called the numerical radius, �(A) �maxz2W (A) jzj: The �eld of values is always a convex set containing �(A). It iscomputationally more attractive than the eigenvalues and eigenvectors because it isnot sensitive to perturbations and can be e�ectively estimated even for large, sparsematrices using, for example, techniques introduced by Braconnier and Higham [3].Eiermann has recently developed GMRES bounds based on the �eld of values,provided 0 62 W (A) [7],[8]. Note that for any A, the matrix 2-norm is bounded bytwice the numerical radius, kAk2 � 2�(A) (see, e.g., [24, Ch. 1]), implying that forany p 2 Pk, kp(A)k2 can be bounded by 2�(p(A)). Kato's �eld of values mappingtheorem [26] ensures that �(p(A)) � maxz2W (A) jp(z)j, thus giving the bound(FOV) krkk2kr0k2 � 2 minp2Pkp(0)=1 maxz2W (A) jp(z)j:Eiermann and Ernst have recently proposed a di�erent �eld of values boundinvolving W (A�1) [9], but we focus here on the more accessible statement (FOV).Several limitations of this bound are clear from the start. Suppose thatW (A) containspoints far from the eigenvalues due to high non-normality associated with a low-degreeinvariant subspace ofA. Then a matrix polynomial p(A) may well annihilate the non-normal portion of A, leaving Kato's inclusion W (p(A)) � p(W (A)) rather slack. Asthe constant term in (FOV) is small and the approximation problem on a convexregion predicts asymptotic linear convergence (see equation (2.5)), the bound (FOV)cannot be accurate for iterations that initially stagnate before converging at a morerapid asymptotic rate. This behavior is observed by Higham and Trefethen in thecontext of matrix powers [22], and identi�ed by Ernst in the context of GMRESapplied to convection{di�usion problems [12], as we see in Section 4.1.Another drawback of this approach is its requirement that 0 62W (A), which rulesout inde�nite problems. This approach also su�ers from outlying eigenvalues, whichcan arti�cially stretch the critical convergence region. We address these problems byworking with projectors onto invariant subspaces of A. Partition the spectrum of Ainto disjoint sets �j , such that �(A) = [�j . De�ne the spectral projectorPj � Z�j 12�i (zI�A)�1 dz;



GMRES CONVERGENCE BOUNDS 5where �j is the union of Jordan curves containing the eigenvalues �j in their collectiveinterior, but not enclosing any other eigenvalues. Then Pj is a projector onto theinvariant subspace of A associated with the eigenvalues �j (see, e.g., [27, xI.5.3]).Theorem 2.3. Let f�jgmj=1 be a partition of �(A) into m disjoint sets. For each1 � j � m, let Pj be the spectral projector onto the invariant subspace associated with�j , and let the columns of Un�rank(Pj)j be an orthonormal basis for Ran Pj . Thenfor any polynomial p 2 Pk,kp(A)k2 � mXj=1 kPjk2 kp(U�jAUj)k2:Proof. Note that �j � UjU�j is the orthogonal projector onto Ran Pj , an in-variant subspace of A. We apply two important identities for spectral projectors:Pmj=1Pj = I and kAPjk2 = kA�jPjk2 (see, e.g., [27, xI.5.3],[31, xIII.1]). Substitut-ing the �rst identity into kp(A)k2 yieldskp(A)k2 =  p(A) mXj=1Pj 2 � mXj=1 kp(A)Pjk2 = mXj=1 k�j p(A)�jPjk2� mXj=1 k�j p(A)�jk2 kPjk2:(2.2)Notice that for each j, k�jp(A)�jk2 = kp(�jA�j)k2 = kUj p(U�jAUj)U�jk2 �kp(U�jAUj)k2. This combines with (2.2) to complete the proof.This theorem provides a natural tool for transferring between global statements,such as (EV), and localized statements like (EV0). In the former case, Theorem 2.3is vacuous since the spectrum is partitioned into a single set; in the latter case,Theorem 2.3 reduces to Theorem 2.1, as each set �j is taken as a single eigenvalueand thus kPjk2 = �(�j). In summary, the cost of localizing non-normality is theintroduction of the spectral projector norm.Theorem 2.3 can be combined with the analysis leading to the bound (FOV) toprovide a �eld of values analog to (EV0).Corollary 2.4. Partition the eigenvalues �(A) into disjoint sets f�jgmj=1 asbefore, with the orthogonal columns of each Uj spanning the invariant subspace of Aassociated with �j. Then(FOV0) krkk2kr0k2 � minp2Pkp(0)=1 kp(A)k2 � minp2Pkp(0)=1 2 mXj=1 maxz2W (U�jAUj) kPjk2 jp(z)j:Provided one is willing to localize su�ciently, (FOV0) is applicable to a wide rangeof matrices, including all matrices with only simple eigenvalues. Some matrices arestill beyond the reach of this �eld of values analysis, though, including any su�cientlynon-normal Jordan block.2.3. Pseudospectra. Pseudospectra provide an alternative stable platform forGMRES bounds. The "-pseudospectrum [40] is de�ned by�"(A) � fz 2 C j k(zI�A)�1k2 � "�1g;



6 MARK EMBREEan equivalent formulation is �"(A) = fz 2 C j z 2 �(A + E); kEk2 � "g: In anearly application of pseudospectral theory, Trefethen [39] developed GMRES boundsby working from the Dunford{Taylor integral [27, xI.5.6] for any polynomial p 2 Pk,p(A) = 12�i Z� p(z)(zI�A)�1 dz;(2.3)where � is any union of Jordan curves containing �(A) in its interior. For a �xed " > 0,we can choose the contour �" to be the boundary of �"(A). (If this isn't the unionof Jordan curves, we can take �" to be slightly exterior.) Coarsely approximating theresolvent norm about �" yieldskp(A)k2 � 12� Z�" jp(z)j k(zI�A)�1k2 djzj � L(�")2�" maxz2�"(A) jp(z)j;where L(�") is the contour length of �". When applied to the GMRES problem, thisgives the bound(PSA) krkk2kr0k2 � L(�")2�" minp2Pkp(0)=1 maxz2�"(A) jp(z)j:A striking feature of this bound, perhaps not widely appreciated, is that it appliesfor di�erent values of ". Moreover, these di�erent values of " may apply at di�erentstages of the iteration. This is strikingly observed in Figure 3.6. As " shrinks, theassociated pseudospectral sets shrink too, and in that sense the pseudospectra form abridge between the �eld of values and the spectrum [22]. A localized version of (PSA)is obtained by simultaneously applying di�erent values of " on discrete pseudospec-tral components in (2.3); unlike (EV0) and (FOV0), this does not introduce spectralprojector norms. Pseudospectral calculation is expensive, but improvements to thenaive approach greatly expedite the process; see Trefethen's recent survey [41]. Weexplore an alternative approach in Section 4.2.4. Computing the Convergence Bounds. With each of the bounds (EV),(FOV), and (PSA) is associated a constant, de�ned asCev � �(V); Cfov � 2; and Cpsa(") � L(�")2�" :The asymptotic behavior of each bound is determined by the associated complexapproximation problem over �(A), W (A), or �"(A).Let 
 � C be a compact set without isolated points tightly bounding W (A),�"(A), or the clustered eigenvalues of �(A)1. The error of the approximation problem,min p2Pkp(0)=1 maxz2
 jp(z)j, decreases asymptotically linearly in the polynomial degree k(see, e.g., [23, Ch. 16]). With this linear rate is associated a constant, �, the asymptoticconvergence rate of 
. Driscoll, Toh, and Trefethen demonstrate how this constantcan be computed via conformal mapping [5]. When the set is a line segment or a disk,the rate is simple to compute. For arbitrary polygons, the rate can be computed usingDriscoll's Schwarz{Christo�elMatlab toolbox for numerical conformal mapping [4].1If A has �nite dimension, �(A) is a discrete point set with no �nite asymptotic convergencerate. If the eigenvalues are clustered, the asymptotic convergence rate of the bounding set 
 typicallydescribes convergence. Outlying eigenvalues don't a�ect this convergence rate; see [5] for details.



GMRES CONVERGENCE BOUNDS 7More general sets may arise, for example, if �(A) has outliers or for �"(A) withsu�ciently small ". If each connected component of a multiply connected set is apolygon on the real axis and is symmetric about the real axis, the rate can still becomputed [11]. More general sets present greater di�culty, and it may in practice benecessary to bound �(A) or �"(A) with a single over-sized polygon.To obtain computable convergence bounds, we must relate minimization over 
with a degree k polynomial p satisfying p(0) = 1 to �k. We are guaranteed thatminp2Pkp(0)=1maxz2
 jp(z)j � �k(2.4)(see, e.g., [5]), and if 
 is a disk, this is sharp. When 
 is a segment [a; b] of a linepassing through the origin, shifted and scaled Chebyshev polynomials are optimal. Inthis case, the minimax error is bounded above by 2�k and known explicitly for each k(see, e.g., [32, x6.11]). If 
 is convex, Eiermann [6],[8] uses Faber polynomial analysisbased on an approximation theorem of K�ovari and Pommerenke [28] to show thatminp2Pkp(0)=1maxz2
 jp(z)j � 2�k1� �k :(2.5)In particular, this bound always applies to the �eld of values [8]. In other circum-stances, one can compute the Faber polynomials associated with 
 from the confor-mal map that determines �, and these polynomials will provide an upper bound onmin p2Pkp(0)=1 maxz2
 jp(z)j: To unify notation, we label the rate associated with each ofthe three sets �(A), W (A), and �"(A) as �ev, �fov, and �psa(").3. Which Bounds are Useful .? In the previous section, we developed the threestandard bounds (EV), (FOV), and (PSA), along with \localized" versions (EV0) and(FOV0). How do these bounds compare to one another? Are they redundant, orcan each provide speci�c insight? We begin by exploring the analytic relationshipsbetween the sets �(A), W (A), and �"(A), and then turn to concrete examples illus-trating the relative merits of the three standard bounds.If the pseudospectra are large, then the �eld of values and the eigenvalue conditionnumber must also be large, in the sense de�ned in the following theorems. The �rst,a version of the Bauer{Fike theorem [2],[42], bounds the pseudospectra by �(V). Thesecond relates the pseudospectra to the �eld of values (see Gustafson and Rao [21,x4.6]). The third relates the �eld of values to the eigenvector condition number as aconsequence of the basic inequality �(A) � kAk2. Let �r � fz 2 C j jzj � rg denotethe disk of radius r.Theorem 3.1 (Bauer{Fike). Let A be diagonalizable, A = V�V�1. Then forany " > 0, �"(A) � �(A) + �"�(V):Theorem 3.2. For any " > 0, �"(A) �W (A) + �":Theorem 3.3. Let A be diagonalizable, A = V�V�1. Then �(A) � �(V) �(A),where �(A) = max�2�(A) j�j is the spectral radius of A.Theorems 3.1 and 3.3 are sharp whenever A is normal. Theorem 3.2 is sharp ifA is a multiple of the identity, or if A is a Jordan block in the limit n = 1 (seeExample D). For non-normal matrices, all three of these theorems may be weak.Theorem 3.1 leads to a simple bound on the constant Cpsa("). Note that �"(A)is bounded by the union of n disks each with radius "�(V). Choosing �" to be theboundary of this union, L(�") can be no larger than 2�n"�(V), so Cpsa(") � n�(V).



8 MARK EMBREETable 3.1Predicted iterations for the six examples of Section 3.1.example (EV) (FOV) (PSA) true iterationsA: all descriptive 1 1 1 1B: none descriptive 1 1 1 see note 1C: (EV) wins see note 2D: (EV) loses 1 1 1 1(FOV) wins see note 3E: (FOV) loses 2 1 2 2F: (PSA) wins 1 1 2 2(PSA) loses see note 31. 2 + log(2=tol)= log(�) iterations, for parameters tol < 1 and � 2 (0; 1).2. \(EV) wins" is more involved; details are given in the text.3. (FOV) can't dramatically beat (PSA); see the \Non-Example" sections below.But since �(A) � �"(A), �ev < �psa(") for all " > 0, and thus (PSA) is only possiblyuseful for those values of " with Cpsa(") < �(V).Similarly, Theorem 3.2 implies that Cpsa(") ! 1 as " ! 1. Note that �"(A)is bounded by the disk centered at 0 with radius �(A) + ". This bounding set givesthe constant Cpsa(") = 1 + �(A)=", and the bound follows as " ! 1. When thecontainment �"(A) � W (A) + �" is nearly equality even for small values of ", thebound (FOV) can be slightly sharper than (PSA), as is seen in Figures 3.1, 3.3,and 3.4. In cases where the bound in Theorem 3.2 is weak, one often �nds that(FOV) predicts slow, consistent convergence, while (PSA) predicts convergence thateventually accelerates to a more rapid rate, as in Figures 3.5, 3.6, and 4.2.3.1. The Examples. The bounds (EV), (FOV), and (PSA) are descriptive indi�erent situations. We demonstrate with six examples where the bounds succeedtogether, fail together, and, in turn, fail and succeed alone. These examples aresummarized in Table 3.1. We only discuss the standard bounds, though in someinstances a localized version would �x the aw that causes the corresponding standardbound to fail. It is di�cult to show the failure of (PSA) with the simultaneoussuccess of (EV) or (FOV). Example C, showing success of (EV) with pessimistic(PSA) bounds, is the least satisfying of our six examples. We also discuss why (FOV)cannot dramatically outperform (PSA).In the illustrations that follow, min p2Pkp(0)=1 kp(A)k2 is drawn as a solid line with dotsat each iteration k. The bound (EV) is drawn as a solid line, (FOV) with a brokenline, and (PSA) with dotted lines for various values of ".� Example A: All descriptive. All bounds accurately describe GMRES con-vergence for a scalar multiple of the identity,A = �I; � 2 C n f0g:Since A is normal with a single eigenvalue, �(A) = W (A) = f�g and �"(A) =f�g+�". The approximation problems in (EV) and (FOV) are on singleton sets, and
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iteration, kFig. 3.1. Convergence bounds for a normal matrix with �(A) = [1; 2] and dimension n =1.thus these bounds predict convergence in one iteration; the associated constants areCev = 1 and Cfov = 2. The pseudospectral bound does as well. The constant termis Cpsa = 1 independent of " and, with its approximation problem on a disk, (PSA)predicts min p2Pkp(0)=1 kp(A)k2 � ("=�)k, implying convergence to arbitrary tolerance in asingle iteration as "! 0.What happens when A remains normal but �(A) is the positive real interval[a; b], rather than a single point? For dimension n = 1, (FOV) and (EV) predictthe same rate of convergence, (pb=a � 1)=(pb=a + 1), with Cev = 1 and Cfov = 2as before. But now (PSA) becomes slightly less accurate, as �"(A) consists of [a; b]surrounded by a border of radius ". The constant Cpsa now involves a �nite lengthscale, Cpsa(") = (b�a)=(�")+1. Descriptive pseudospectral bounds require balancingthe more accurate convergence rates obtained for small " against the growth of theconstant Cpsa("). Figure 3.1 illustrates this situation for �(A) = [1; 2].� Example B: None descriptive. As described in Section 2, each bound canbe deceived by low-dimensional non-normality. Example B exploits this shortcoming:A = � 1 �1 �� b�; �� 1;where b� is a diagonal matrix with uniformly distributed real positive entries in thepositive real interval [a; b]. GMRES requires two iterations to eliminate the highlynon-normal Jordan block, and then convergence depends only on the interval [a; b].Thus, GMRES can be bounded from above independent of �.Since A is non-diagonalizable, Cev = 1 and (EV) isn't helpful. The �eld ofvalues grows ever larger with �, with 1 + ��=2 � W (A). Consequently, the �eld ofvalues bound predicts no convergence when � � 2. Analysis of the pseudospectralbound is slightly more involved. (PSA) accurately predicts convergence of the Jordan



10 MARK EMBREEblock as " ! 0 (see Example F), but such values of " lead to large constant termsassociated with [1; 2], the normal eigenvalues of A (as described in Example A). Onecan show that Cpsa(") � �=p" for all " > 0. For " su�ciently small such that thecomponent of the pseudospectrum generated by the Jordan block does not intersectthe component associated with b�, we have Cpsa(") � �=p"+ (b� a)=(�") + 1. Thisbound can be made arbitrarily poor by increasing �, and thus in Table 3.1 we saythat (PSA) predicts in�nitely many iterations.This example is essentially an extreme version of the diagonalizable example con-structed by Greenbaum and Strako�s to demonstrate the failure of the pseudospectralbound (PSA) [20].� Example C: Only (EV) descriptive. The �eld of values and pseudospectralbounds are based on approximation problems on dense sets in the complex plane, andso the convergence rates predicted by these bounds depend on parts of the spectrumthat may be eliminated at an early stage of iteration. When there are outlier eigen-values, (EV) may be signi�cantly more descriptive than (PSA) and (FOV) because itsapproximation problem is discrete and isolated outliers do not inuence �ev. De�neA = � � b�; 0 < �� � 1;where b� is a diagonal matrix with entries uniformly distributed in the positive realinterval [a; b].Since A is normal, convergence is determined by the spectrum. The bound (EV),with Cev = 1, is exact. This convergence can be bounded by the polynomial pk(z) =(1� z=�)qk�1(z), where qk is the optimal degree k residual polynomial on the interval[a; b]. The outlier eigenvalue � near the origin will lead to an initial stagnation [5];the polynomial pk suggests that this plateau will last no more than1 + log(�)� log(2� + b)log(�) iterations;where � = (pb=a � 1)=(pb=a + 1). Note that this stagnation is not due to non-normality, as is the case in Example F.By placing the outlier on the opposite side of the origin from the rest of the spec-trum, we ensure that 0 2 W (A) and thus (FOV) predicts no convergence. (If � weresmall and positive, (FOV) would predict non-trivial, but pessimistic, convergence.)The pseudospectral bound su�ers from the fact that it can't identify � as a singleeigenvalue, eliminated at an early stage of convergence. For any �nite ", the pseu-dospectrum about � = � is a disk of radius ". The approximation problem on �"(A)must always incorporate it in the asymptotic bounds. This e�ect diminishes as " de-creases, but such small values of " lead to large constants (Cpsa(") = 2+ (b� a)=(�")for n = 1) due to the interval [a; b]. In particular, it is necessary to take " < � toobtain non-trivial convergence rates.This is the least analytically compelling of our six examples. In particular, it isdi�cult to cleanly describe the convergence rates associated with (PSA). In Figure 3.2,we illustrate (PSA) for � = 0:01, [a; b] = [1; 2], and n = 1. This representation of(PSA) is obtained by underestimating the convergence rate of �"(A), taking insteadthe rate associated with the union of two intervals, [� � "; � + "] [ [a� "; b+ "]. Thisrate can be expressed in terms of elliptic integrals, as described and implemented inMatlab by Fischer [13]. The pseudospectral constants are Cpsa(") = 2+(b�a)=(�").While a single outlier, as presented in this example, may appear to be an easily-overcome obstacle for the bounds (FOV) and (PSA), the same phenomenon can prove
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iteration, kFig. 3.2. Convergence bounds for Example C with � = 0:01 and n =1.more di�cult to identify when the outlier consists of a cluster of several eigenvalues,or if it is non-normal.� Example D: Only (EV) not descriptive. The bound (EV) fails for any non-diagonalizable matrix. Yet defectiveness alone does not imply high non-normality. Forthe present example, consider small perturbations to the identity matrix,A = 0BBBB@ 1 �1 . . .. . . �1 1CCCCA ; 0 < � � 1:This matrix is completely defective for all � 6= 0, but small values of � exert only theslightest impact on convergence. Unlike the case of � = 0, there will now be residualsthat require n iterations to exactly converge. In fact, if r0 is the nth column of theidentity matrix, Ipsen [25] shows thatkrkk2kr0k2 = �kr 1� �21� �2(k+1) :(3.1)This is nearly the worst case, as min p2Pkp(0)=1 kp(A)k2 � �k:Since A is non-diagonalizable, (EV) fails to predict convergence. The �eld ofvalues is known explicitly for this example, W (A) = 1 + �� cos((n+1)�1) [21, x1.3],leading to the exact formulation of (FOV): min p2Pkp(0)=1 kp(A)k2 � 2(� cos((1 + n)�1))k.The pseudospectra are also disks for this example [42], but the radius of these disksisn't generally known in closed form. In the limit n ! 1, a theorem of Reichel and
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iteration, kFig. 3.3. Convergence bounds for Example D with � = 1=2 and n = 32.Trefethen [30] shows that �"(A) = 1 +��+". In this limit, the bounds give:(FOV) : minp2Pkp(0)=1 kp(A)k2 � 2 �k (PSA) : minp2Pkp(0)=1 kp(A)k2 � (1 + �=")(� + ")k:In the limit as � ! 0, both these bounds predict convergence to arbitrary desiredtolerance in a single iteration, though (FOV) is asymptotically sharper for n = 1.One must balance the size of the (PSA) constant against the accompanying conver-gence rate, just as for the normal matrix with �(A) = [a; b] discussed in Example A.Figures 3.3 and 3.4 illustrate this for � = 1=2 with n = 32 and n = 1. For the\exact" curve, we plot the lower bound given by equation (3.1). The bound (PSA)is particularly interesting in the �nite-dimensional case. In fact, for very small val-ues of ", (PSA) predicts convergence rates that are too quick, associated with largeconstants that ensure that bound doesn't intersect the convergence curve for k < n.Taking A to be non-diagonalizable makes for a clean example, but it is not neces-sary. Moving the diagonal entries of A from � to distinct nearby values, one obtainsarbitrarily large values of Cev = �(V) and corresponding convergence rates not nec-essarily descriptive of the observed rates.� Non-Example: Only (FOV) descriptive. Theorem 3.2 indicates that ex-amples where (FOV) dramatically outperforms (PSA) may be di�cult to �nd. Since�"(A) �W (A)+�", the rate �psa(") can only be signi�cantly larger than �fov whenthis containment is sharp, " is relatively large, and the setsW (A) and �"(A) are nearthe origin. In such cases, values of " that yield �psa(") similar to �fov will be associ-ated with small " and thus large constant terms Cpsa("). But proximity to the originimplies that �fov will predict slow convergence, and the pseudospectral bounds, whileless sharp, will still provide a decent indication of the number of iterations requiredto meet the convergence criteria. Taking the non-diagonalizable Example D with �close to 1 and n =1 yields the most extreme behavior possible.
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iteration, kFig. 3.4. Convergence bounds for Example D with � = 1=2 and n =1.� Example E: Only (FOV) not descriptive. The �eld of values bound (FOV)is not descriptive when there is initial stagnation followed by more rapid convergence.The simplest example of GMRES stagnation at the �rst iteration occurs for the sym-metric inde�nite matrix A = � 1 �1 � ;as described by Saad and Schultz [33]. Since A 2 C2�2, the second iteration givesexact convergence.Since A is normal, (EV) is exact, correctly predicting two iterations to solve thepolynomial approximation problem on the discrete set of two eigenvalues. SinceW (A)is the convex hull of �(A), the �eld of values contains the origin for this example,W (A) = [�1; 1], and thus (FOV) predicts no convergence. The "-pseudospectrumconsists of the union of two disks of radius ", each centered at an eigenvalue. Thus,Cpsa(") = 2 independent of 0 < " � 1. Taking "! 0, (PSA) predicts arbitrarily goodconvergence in two iterations.The bound (FOV) can also fail when A is a non-normal matrix with �"(A) in theright half plane. The following example, with uniformly ill-conditioned eigenvectors,is the only case we discuss where �(V) is large and (EV) is descriptive. Let � bediagonal with eigenvalues uniformly distributed in the interval [1; 2] and de�neA = V�V�1; where V = 0BBBBBB@ 1 p1� � p1� � � � � p1� �p� 0 � � � 0p� . . . .... . . 0p�
1CCCCCCA ;(3.2)
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iteration, kFig. 3.5. Convergence bounds for the matrix 3.2 with � = 10�8 and n = 64.and 0 < � � 1 is a small positive parameter.Clearly, these eigenvectors are highly ill-conditioned; looking at the upper left 2�2block of V alone shows that �(V) � (1 +p�)=p�. One can show �(V) = O(n=p�)as n ! 1 and � ! 0. If 0 < � < 1=9, then 0 2 W (A) and (FOV) is vacuous;for particularly small �, the �eld of values is extremely large. The pseudospectra arelikewise large, but as " is taken small enough such that 0 62 �"(A), the bound becomesincreasingly descriptive. This is another case where the inclusion in Theorem 3.2 isweak for small ".Figure 3.5 presents the bounds for � = 10�8 and n = 64. The constant Cev =�(V) is obtained by computing the condition number in Matlab, with the �rst col-umn of V multiplied by pn to improve conditioning. The rate �ev is taken from theoptimal polynomial on the interval [1; 2]. The pseudospectral bound was determinedfor each " by bounding �"(A) by an exterior convex polygon, obtaining the conver-gence rate through numerical conformal mapping, and then applying the bound (2.5).The \exact" curve was computed using the semide�nite programming strategy of Tohand Trefethen [38], as implemented in the Matlab SDPT3 toolbox [36]. For thisexample, random initial residuals do not exhibit the long plateau obtained in boundon worst case convergence computed from min p2Pkp(0)=1 kp(A)k2.� Example F: Only (PSA) descriptive. For the Jordan block in Example D,the �eld of values bound (FOV) captured the single convergence rate perfectly. Forthe present example, we seek a non-diagonalizable matrix that initially stagnates buteventually converges more rapidly, making (FOV) misleading. The most extremeexample of this behavior is the matrixA = � 1 �1 � ; �� 1;



GMRES CONVERGENCE BOUNDS 15which featured as a submatrix in Example B. For � � 2, there are right hand sidesfor which GMRES makes no progress at the �rst step. Yet at the second step, thereis exact convergence since A 2 C2�2.Since A is non-diagonalizable, Cev = 1 and (EV) does not apply. Since the�eld of values is a disk centered at 1 with radius �=2, W (A) = 1 + ��=2 [21, x1.3],the �eld of values bound fails to predict convergence for � � 2. The pseudospec-tral bound, however, captures the exact convergence in two iterations. As " ! 0,�"(A)! 1+��p". For such ", Cpsa(")! �=p" and (PSA) predicts to leading ordermin p2Pkp(0)=1 kp(A)k2 � �k+1(p")k�1. For any �xed �nite �, we can make the right handside of this bound arbitrarily small for k � 2, so we must have exact convergence intwo iterations.A more interesting example, without reliance on �nite dimension, is obtained byvarying the entries in the �rst upper diagonal of a Jordan block,A = 0BBBBBB@ 1 �1 �21 . . .. . . �(n�1)1
1CCCCCCA ;(3.3)for constant � > 0. Reichel and Trefethen called a closely related example the \inte-gration matrix" [30].Since A is non-diagonalizable, the bound (EV) can't be usefully applied. Boththe �eld of values and the pseudospectra of A are circular disks [42]. If n � 2 and� � 2, then 0 2 W (A). For such values of �, (FOV) can only predict stagnation.Driscoll, Toh, and Trefethen discuss this particular example, arguing that pseudospec-tral bounds may be descriptive. As motivation, they note that the pseudospectrashrink rapidly as " decreases. For small ",W (A) is much larger than �"(A), and thus(PSA) predicts much faster convergence rates than (FOV).Figure 3.6 shows the bounds for � = 5=2 and n = 64. The exact curve wascomputed using the technique of Toh and Trefethen [38]. The pseudospectral boundswere obtained by numerically determining the radius of each pseudospectral boundary.Increasing the dimension n doesn't signi�cantly alter the pseudospectra for the valuesof " shown here, as such an extension is a small perturbation of the direct sum of theoriginal matrix with another integration matrix having smaller pseudospectra.� Non-Example: Only (PSA) not descriptive. Success of (EV) and (FOV)together implies that W (A) and �(A) determine similar asymptotic convergencerates. There can be little initial stagnation if (FOV) is descriptive, and thus �(V)must be small if both bounds are to be descriptive. Thus, Amust be normal (or nearlyso). Theorems 3.1 and 3.2 then assure us that �"(A) cannot be much larger than�(A) andW (A), so it is impossible to get an example where (PSA) performs dramat-ically worse than (EV) and (PSA). The closest one can come are normal matrices with�(A) = [a; b], where a is close enough to the origin to makes the pseudospectrum'srim of radius " about the spectrum signi�cant even for small ", leading to an extremeversion of Figure 3.1.3.2. Summary of the Examples. Let us collect some of the points highlightedin these examples.
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iteration, kFig. 3.6. Convergence bounds for the integration matrix (3.3) with � = 5=2 and n = 64.(EV) This bound worked perfectly for normal matrices and for (3.2), where alleigenvalues were uniformly non-normal, but failed when the matrix was non-diagonalizable or the non-normality was primarily associated with only partof the spectrum.(FOV) The �eld of values performed well when only one convergence stage was ob-served, as in Examples A and D. Its primary advantages over (PSA) for theseexamples was sharpness (Figures 3.1, 3.3, and 3.4) and ease of computability.In the presence of transient stagnation, (FOV) failed, as in Examples B, C,E, and F.(PSA) The pseudospectral bound inherits properties of both (EV) and (FOV), butcan also capture interesting information between these extremes, as seen inExample F. The primary aw in (PSA), exploited in Examples B and C, isits inability to recognize the �niteness of the spectrum, thus overestimatingthe inuence of outliers eliminated at an early stage of convergence.In the next section, we see how pseudospectra can yield convergence estimates duringan iteration, and see how the bounds we have surveyed here apply to a matrix derivedfrom a convection{di�usion problem.4. Adaptive Pseudospectral Bounds. Often the pseudospectra bound pro-vides a good indication of convergence behavior, especially when a range of values for" are considered. The expense of full pseudospectral computation limits this bound'swide applicability, though. In this section, we see that information constructed withinthe GMRES iteration by the Arnoldi orthogonalization can give descriptive pseu-dospectral convergence estimates.The �rst k < n steps of the Arnoldi process [1] build an orthonormal basisfv1; : : : ;vk+1g for the Krylov subspace Kk+1(A; r0) � spanfr0;Ar0; : : : ;Akr0g. Thisconstruction gives a partial upper Hessenberg decomposition of A, such that if Vk =



GMRES CONVERGENCE BOUNDS 17(v1; : : : ;vk) 2 Cn�k, thenAVk = Vk+1Hk and V�kAVk =Hk;(4.1)where Hk 2 Ck+1�k is upper Hessenberg and Hk 2 Ck�k consists of the �rst k rowsofHk (see, e.g., [32, x6.3]). We take the subdiagonal entries ofHk to be non-negative.Toh and Trefethen [37] show that the pseudospectra of Hk and Hk can well-approximate those of �"(A) even when k � n. They de�ne the pseudospectra ofa rectangular matrix using the pseudoinverse, implying that z 2 �"(Hk) provided�k(zI �Hk) � ", where I is the k � k identity matrix augmented by a row of zerosand �k is the kth largest singular value. With this de�nition, the relationship between�"(Hk), �"(Hk), and �"(A) can be quanti�ed.Theorem 4.1. Suppose V�kAVk =Hk and AVk = Vk+1Hk. Then(1) �"(H1) � �"(H2) � � � � � �"(Hn�1) � �"(Hn) = �"(A):(2) �"(Hk) � �b"(Hk) � �b"(A);where b" � "+ hk+1;k:Proof. Part (1) was proved by Toh and Trefethen; it follows immediately fromnoting that �k(zI�Hk) � �k+1(zI�Hk+1): For part (2), suppose that z 2 �"(Hk).Observe that �k(zI � Hk) � �k(zI � Hk) + hk+1;k � " + hk+1;k; where the �rstinequality follows Horn and Johnson's Theorem 3.3.16 [24]. Applying (1) to thisbound completes the proof.Since the pseudospectra of Hk and Hk approximate those of A, it is natural toconsider the bound (PSA) with A replaced by Hk or Hk. The resultant expressionis no longer a convergence bound, but only an estimate. We havekrkk2kr0k2 <� L(�")2�" minp2Pkp(0)=1 maxz2�"(A) jp(z)j;where �" is a Jordan curve enclosing �"(Hk) or �"(Hk).What value of " is relevant at a speci�c iteration? The following bounds, whilenot necessarily sharp, indicate where GMRES is focusing its energy.Proposition 4.2. For k < n, the eigenvalues of Hk (Ritz values) are containedin the "-pseudospectrum of A for " = hk+1;k. If Hk is nonsingular, the roots of theGMRES residual polynomial (harmonic Ritz values [15], [17]) are contained in the"-pseudospectrum of A for " = hk+1;k + h2k+1;k=�k(Hk).Proof. We prove the �rst part by constructing the speci�c perturbation matrixE = �hk+1;kvk+1e�kV�k. Then, from (4.1),(A+E)Vk = VkHk + hk+1;kvk+1e�k +EVk= VkHk;where ek 2 Ck is the kth column of the k�k identity matrix. This implies that Vk isan exact invariant subspace of A+E, and thus �(Hk) � �(A+E) � �"(A), where" � hk+1;k � kEk2.The second part follows from the analysis of Goossens and Roose [17]. Theycharacterize the harmonic Ritz values as the eigenvalues of (Hk + h2k+1;kfke�k), wherefk = H��k ek. De�ning the perturbation E = (Vkh2k+1;kfke�k � hk+1;kvk+1e�k)V�k,it follows from (4.1) that (A + E)Vk = Vk(Hk + h2k+1;kfke�k); and thus �(Hk +h2k+1;kfke�k) � �(A + E) � �"(A), where kEk2 � " � hk+1;k + h2k+1;k=�min(Hk).
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0 2 4 6 8 10 12 14 16 18 20Fig. 4.1. Adaptive convergence bounds for the integration matrix (3.3) at iteration k = 4 onthe left and k = 12 on the right.GMRES convergence estimates derived from �(Hk) have several applications.If k is taken to be small, the estimate may give an indication of GMRES behaviorat future iterations. If k is larger (e.g., the k that satis�es the GMRES convergencecriterion), one may obtain a good description of worst case convergence over all initialresiduals. This estimate depends on the particular initial residual r0 that determinesthe entries of Hk. If r0 is de�cient in all eigenvector directions associated with aparticular eigenvalue, that eigenvalue cannot inuence Hk nor the estimates derivedfrom it. If r0 only has a small component in a certain eigenvector direction, thatcomponent may not exert much inuence early iterations (and Hk for small k), butbecome signi�cant at later iterations.Toh and Trefethen observe qualitative links between the pseudospectra and theGMRES iteration polynomial [34], [38]. A deeper quantitative understanding of thisrelationship would be an important step toward appreciating the ability of pseu-dospectral bounds to describe GMRES convergence, the value of " for which �"(A) isrelevant for each iteration, and the merits of adaptive strategies, like the one describedhere, to capture signi�cant features of convergence behavior.Figure 4.1 illustrates adaptive estimates drawn from the integration matrix withn = 64 and � = 5=2. In Figure 3.6, we saw that the bound (PSA) was ideal forthis example, and thus hope these Arnoldi estimates would perform similarly well.The estimates shown were here are based on a random initial residual with entriesdrawn from the standard normal distribution. Taking estimates at iteration k = 4gives some hint of the quick convergence that follows; when k = 12, the pseudospectraof Hk match those of A for the relevant values of " and characterize the worst caseconvergence curve. The curve labeled krkk2=kr0k2 is the convergence obtained forthis particular initial residual, with an asterisk marking the iteration that yields theconvergence estimate.4.1. A Practical Example. We illustrate the use of this technique, and thebounds (EV), (EV0), (PSA), and (FOV), for a model problem from uid dynamics. LetA be the matrix generated by a streamline upwinded Petrov{Galerkin �nite elementdiscretization of the two-dimensional convection{di�usion equation,���u+w � ru = f on 
 = [0; 1]� [0; 1];
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iteration, kFig. 4.2. Convergence bounds for the convection{di�usion problem with N = 13.with di�usion � = 0:01, constant vertical wind w = (0; 1), and Dirichlet boundaryconditions that induce an interior layer and a boundary layer. The solution is ap-proximated with bilinear �nite elements on a regular square grid with N unknownsin each coordinate direction, yielding a matrix A of dimension n = N2. This problemis discussed by Fischer et al. [14]; we apply the upwinding parameter they suggest.This parameter value leads to good approximate solutions to the partial di�erentialequation, but the corresponding matrix is highly non-normal. Its eigenvalues, thoughvery sensitive to perturbations, are known analytically for this special wind direc-tion [14]. These eigenvalues fall on N lines in the complex plane with constant realpart, with N eigenvalues per line. The eigenvalues with largest real part are the mostill-conditioned. The coe�cient matrix is non-diagonalizable in the limit N !1, andthe eigenvector matrix condition number is very large even for modest values of N .The high non-normality of A leads early iterations of GMRES to stagnate fortypical initial residuals. Ernst investigated the �eld of values bound (FOV) for thismatrix [12]. Since A results from a coercive �nite element discretization, W (A) iscontained in the open right half plane and (FOV) applies non-trivially. As expectedfrom the initial stagnation, this bound is descriptive at early iterations but asymptoti-cally inaccurate. As in Examples E and F, (PSA) does better. Though it is somewhatpessimistic asymptotically, it accurately captures the end of the initial stagnation, afeature that eludes the other two bounds.Figure 4.2 illustrates (EV), (FOV), and (PSA) for N = 13. The eigenvectormatrix V is known analytically [14]. When each column of V has unit 2-norm, wecompute �(V) � 4:6� 1016. We bound �ev by the convergence rate associated withthe convex hull of the eigenvalues of A; this agrees with the observed asymptoticconvergence rate, though Cev is much too large. The bound (FOV) gives �fov �0:968. The pseudospectral bound leads to better convergence rates; we computethese rates by calculating the convergence rate of an approximate convex hull of
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