Eigenvalues of tridiagonal Toeplitz matrices

Suppose we have an $n \times n$-matrix of the form

$$
A=\left[\begin{array}{ccccc}
\alpha & \delta & & & \tag{1}\\
\gamma & \alpha & \delta & & \\
& \ddots & \ddots & \ddots & \\
& & \gamma & \alpha & \delta \\
& & & \gamma & \alpha
\end{array}\right]
$$

and we wish to find its eigenvalues and eigenvectors. To begin with, let us just consider the special case where $\alpha=2, \gamma=\delta=-1$, that is

$$
\hat{A}=\left[\begin{array}{lllll}
2 & -1 & & & \tag{2}\\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]
$$

The approach we use, is to consider the eigenvalue equation $\hat{A} x=\lambda x$ on component form

$$
\begin{equation*}
-x_{k-1}+(2-\lambda) x_{k}-x_{k+1}=0, \quad k=1, \ldots, n, \tag{3}
\end{equation*}
$$

if we adopt the convention that $x_{0}=x_{n+1}=0$. From the theory of linear constant coefficient difference equations we make an ansatz that solutions are of the form $x_{k}=r^{k}$ for some $r \in \mathbb{C}$. Substituting this ansatz into (3) and discarding the trivial 0 -solution, we obtain the following quadratic equation for r :

$$
\begin{equation*}
r^{2}-(2-\lambda) r+1=0 \tag{4}
\end{equation*}
$$

whose root we denote r_{1}, r_{2}. We then observe that one must have $r_{1} r_{2}=1$ since the product of the roots is the constant term divided by the leading coefficient. So the general solution to (3) can be written

$$
x_{k}=C r_{1}^{k}+C^{\prime} r_{2}^{k}
$$

for constants C, C^{\prime}. Now we use the boundary conditions $x_{0}=x_{n+1}=0$ to get

$$
r_{1}^{n+1}-r_{2}^{n+1}=0
$$

which, using $r_{1} r_{2}=1$ implies $r_{1}^{2 n+2}=1$, so r_{1} is found by taking the $(2 n+2) t h$ roots of unity and the corresponding $r_{2}=\bar{r}_{1}$

$$
r_{1, m}=\mathrm{e}^{\mathrm{i} \frac{m \pi}{n+1}}, m=1, \ldots, n
$$

Notice that taking $m=n+1$ would result in the 0 -solution once again, and the case $m>n+1$ can be discarded due to the symmetry in the solutions for r_{1} and r_{2}. Being primarily interested in the corresponding eigenvalues λ_{m} we observe from (4) that $r_{1, m}+r_{2, m}=2 \operatorname{Re}\left(r_{1, m}\right)=2-\lambda_{m}=2 \cos \frac{m \pi}{n+1}$. So

$$
\begin{equation*}
\lambda_{m}=2-2 \cos \frac{m \pi}{n+1}=4 \sin ^{2} \frac{m \pi}{2(n+1)}, \quad m=1, \ldots, n \tag{5}
\end{equation*}
$$

Suppose now that we want to compute the eigenvalues of the more general matrix (1). The following identity, valid for any matrix $M \in \mathbb{C}^{n \times n}$ is obvious

$$
\begin{equation*}
M x=\lambda x \quad \Leftrightarrow \quad(a M+c I) x=(a \lambda+c) x, \quad a, c \in \mathbb{C} . \tag{6}
\end{equation*}
$$

so that if λ is an eigenvalue of M, then $a \lambda+c$ is an eigenvalue of $a M+c I$ The second tool we use is a similarity transform; let $X=\operatorname{diag}\left(1, \mu, \mu^{2}, \ldots, \mu^{n-1}\right), 0 \neq \mu \in \mathbb{C}$. Then for A as in (1) compute

$$
B=X^{-1} A X=\left[\begin{array}{ccccc}
\alpha & \delta \mu & & & \tag{7}\\
\gamma / \mu & \alpha & \delta \mu & & \\
& \ddots & \ddots & \ddots & \\
& & \gamma / \mu & \alpha & \delta \mu \\
& & & \gamma / \mu & \alpha
\end{array}\right]
$$

Suppose for simplicity that $\delta \gamma>0$. Choosing $\mu=\sqrt{\frac{\gamma}{\delta}}$, the effect is that B then is a tridiagonal symmetric matrix with off-diagonal element $\sqrt{\gamma \delta}$ and diagonal elements α. Also recall that B has the same eigenvalues as A. We now just need to observe that

$$
B=-\sqrt{\gamma \delta} \hat{A}+(\alpha+2 \sqrt{\gamma \delta}) I
$$

such that

$$
\lambda_{m}(A)=-\sqrt{\gamma \delta} \lambda_{m}(\hat{A})+\alpha+2 \sqrt{\gamma \delta}
$$

Using (5) and (6) we get

$$
\lambda_{m}(A)=\lambda_{m}(B)=\alpha+2 \sqrt{\gamma \delta} \cos \frac{m \pi}{n+1}, m=1, \ldots, n
$$

It is left as an exercise to the reader to find the corresponding formula when $\gamma \delta<0$.

