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Contact during exam
Name: Brynjulf Owren (93021641)

EXAM IN NUMERICAL LINEAR ALGEBRA (TMA4205)

Friday December 5, 2008
Time: 09:00�13:00

Aids: Category A, All printed and hand written aids allowed. All calculators allowed.

Problem 1 The partial di�erential equation

−uxx + c u = f, c ≥ 0.

with homogeneous Dirichlet boundary conditions, yields after discretizing with centered dif-
ferences, a linear system of the form Au = b where A = tridiag(−1, 2 + γ,−1), A ∈ Rm×m,
γ = c/(m + 1)2. We �nd that A has eigenvalues

λk = γ + 4 sin2

(
kπ

2(m + 1)

)
, k = 1, . . . ,m,

and corresponding eigenvectors

wk =


sin

(
kπ

m+1

)
sin

(
2kπ
m+1

)
...

sin
(

mkπ
m+1

)

 .

a) Formulate the weighted Jacobi method with relaxation parameter ω for this linear sys-
tem,and show that the iteration can be written in the form

u(q+1) = Gω u(q) +
ω

2 + γ
b where Gω = I − ω

2 + γ
A,
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and that the iteration matrix Gω has eigenvalues

µk = 1− ω

2 + γ

(
γ + 4 sin2

(
kπ

2(m + 1)

))
, k = 1, . . . ,m,

and the same eigenvectors as A

Answer: Standard Jacobi results from the splitting A = M −N = 2 + γI − ((2 + γ)I −A) and thus

(2 + γ)u(q+1) = ((2 + γ)I −A)u(q) + b

Gω is obtained by dividing by (2 + γ) on each side. Eigenvalues and eigenvectors are found from

Gωwk = (I − ω

2 + γ
A)wk =

(
1− ω

2 + γ
λk

)
wk

where we insert the given λk.

b) The error after q iterations with weighted Jacobi on this system can be written as

e(q) = Gq
ω e(0) =

m∑
k=1

ρkµ
q
kwk,

where

e(0) =
m∑

k=1

ρkwk

is the initial error e(0) expressed in terms of the eigenvectors wk.

Determine the (optimal) value ωopt of ω from which the best damping occurs of the upper
half of the spectrum of the error, i.e. �nd

ωopt = arg min
ω

max
k> m+1

2

|µk|.

Verify that you get back to the known ωopt = 2/3 when γ = 0. What happens when γ
tends to in�nity?

Answer: We introduce the variable θ = k/(m + 1), and �nd that

µ(θ) = 1− ω

2 + γ

(
γ + 4 sin2

(π

2
θ
))

µ(θ) is a decreasing function of θ, so min and max are attained in the end points of the closed interval
θ ∈ [1/2, 1]. We conclude that the optimal ω is obtained when µ(1/2) = −µ(1), that is

1− ω(γ + 2)
γ + 2

= −
(

1− ω(γ + 4)
γ + 2

)
which yields

ωopt =
γ + 2
γ + 3

,

so γ = 0 leads to the well-known result ωopt = 2/3. When γ increases, ωopt tends to the value 1.
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Problem 2

a) Describe brie�y the idea behind the projection methods for solving linear systems Ax = b.
Use approximately 4-5 lines.

Answer: The idea is to de�ne an approximation space K and a constraint space L of the same dimension,
and thereafter seek, for a given x0, a vector x such that

x− x0 ∈ K, b−Ax ⊥ L

Assume in the rest of this problem that A ∈ Rn×n is symmetric positive de�nite, b ∈ Rn is a
given right hand side, and x = A−1b. We let rk = b− Axk og ek = x− xk = A−1rk, for k ≥ 0
and assume that x0 is a given vector.

b) Let us use as approximation space K = span{v} and constraint space L = K. Let x1 be
the result of one step with the projection method. Show that

〈Ae1, e1〉 = 〈Ae0, e0〉 − 〈r0, v〉2/〈Av, v〉.

Answer: The method is

x1 = x0 +
〈r0, v〉
〈Av, v〉

v ⇒ e1 = e0 −
〈r0, v〉
〈Av, v〉

v

Since r1 ⊥ v

〈Ae1, e1〉 = 〈r1, e1〉 = 〈r1, e0〉 = 〈Ae0, e0〉 −
〈r0, v〉
〈Av, v〉

〈Av, e0〉 = 〈Ae0, e0〉 −
〈r0, v〉2

〈Av, v〉

In the last step we have used that A is symmetric.

c) The method from the previous question says nothing about how the new search direction
v is chosen in each iteration. Let us therefore introduce the following principle: Choose
vk such that 〈vk, rk〉 = ‖rk‖1, that is, let the components in vk be 1 and −1, negative (−1)
if the corresponding component in rk is negative, and positive (+1) if the rk component
is ≥ 0. Show that

‖ek+1‖A ≤
(

1− 1

nκ(A)

)1/2

‖ek‖A.

Here κ(A) = ‖A‖2‖A−1‖2 while ‖w‖A = 〈Aw, w〉1/2.

Answer: Rewriting the result from the previous question yields

‖ek+1‖2
A =

(
1− 〈rk, vk〉2

〈Avk, vk〉〈Aek, ek〉

)
‖ek‖2

A
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Now use 〈rk, vk〉 = ‖rk‖1 ≥ ‖rk‖2, and that

〈Avk, vk〉 〈Aek, ek〉 = 〈Avk, vk〉 〈rk, A−1rk〉 ≤ ‖A‖2‖A−1‖2‖vk‖2
2‖rk‖2

2 = n κ(A) ‖r0‖2
2

We thereby get
〈rk, vk〉2

〈Avk, vk〉〈Aek, ek〉
≥ ‖rk‖2

2

nκ(A)‖rk‖2
2

=
1

nκ(A)

and as desired we obtain

‖ek+1‖2
A ≤

(
1− 1

nκ(A)

)
‖ek‖2

A

Problem 3 Let the matrix A be given as

A =

 8 1 0
1 4 ε
0 ε 1

 , |ε| ≤ 1.

a) Give an estimate for the eigenvalues of A by using the Gerschgorin theorem. In particular,
what can one say about the smallest eigenvalue? Make a sketch to illustrate.

Answer: All three Gerschgorin circles are disjoint, and the matrix is symmetric so the eigenvalues are
real. We �nd that the eigenvalues λ1, λ2, λ3 satisfy

7 ≤ λ1 ≤ 9, 3− ε ≤ λ2 ≤ 5 + ε, 1− ε ≤ λ3 ≤ 1 + ε.

In particular, the smallest eigenvalue is between 1− ε and 1 + ε.

b) Show for instance by using a suitable diagonal similarity transformation the sharper
estimate |λ3 − 1| ≤ ε2 for the smallest eigenvalue of A.

Answer: We compute the similarity transformation with T = diag(1, 1, ε) and

TAT−1 =

 8 1 0
1 4 1
0 ε2 1


and the third Gerschgorin disk is still disjoint from the others whenever |ε| ≤ 1, and therefore contains

an eigenvalue.

c) For ε = 0.1 one has found Q and R such that A− I = QR where

Q =

 −0.9899 0.1413 0.0050
−0.1414 −0.9893 −0.0350

0 −0.0353 0.9994

 , R =

 −7.0711 −1.4142 −0.0141
0 −2.8302 −0.0989
0 0 −0.0035

 .
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Find an approximation to the smallest eigenvalue of A from this.

Answer: We can easily perform one iteration with the shifted QR method, we just need to determine
the (3, 3) element in A1 = RQ + I which becomes

1 + (−0.0035) · 0.9994 = 0.9965,

The answer is correct in all 4 digits.

Problem 4

a) Find the singular value decomposition of the matrix

A =

 1 0
−1 1

0 −1

 .

Answer: 
1√
6

1√
2

1√
3

−2√
6

0 1√
3

1√
6

−1√
2

1√
3

 ·

 √
3 0

0 1
0 0

 · 1√
2

[
1 1

−1 1

]T

b) The matrix in the previous question is a special case of a matrix B ∈ R(n+1)×n where
Bk,k = 1, Bk+1,k = −1 for k = 1, . . . , n and where all other elements of B are zero.
Determine the singular value decomposition of B.

Answer: We must �nd U, V,Σ such that B = UΣV T . Here we �nd that BT B = tridiag(−1, 2,−1) for
which we know the eigenvalues:

σ2
k = 4 sin2

(
kπ

2(n + 1)

)
⇒ σk = 2 sin

(
kπ

2(n + 1)

)
, k = 1, . . . , n.

The matrix V has the eigenvectors of BT B as columns, they are also known, but we need to scale them
such that the Euclidian norm is 1.

‖wk‖2
2 =

n∑
j=1

sin2

(
jkπ

2(n + 1)

)
=

n + 1
2

So column k in V is

vk =

√
2

n + 1



sin
(

kπ
n+1

)
sin

(
2kπ
n+1

)
...

sin
(

nkπ
n+1

)


.
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To �nd column k in U , we set uk = 1
σk

Bvk. Component ` of uk is therefore (at the moment we ignore

the factor
√

2/(n + 1))
1
σk

(
sin

(
k`π

n + 1

)
− sin

(
k(`− 1)π

n + 1

))
Here we could have called it a day, but it is in fact here all the fun begins. Letting

φ =
k(`− 1/2)π

n + 1
, δ =

kπ/2
n + 1

⇒ σk = 2 sin δ

the above expression becomes

1
σk

(sin(φ + δ)− sin(φ− δ)) = cos φ
2 sin δ

σk
= cos φ = cos

(
k(`− 1/2)π

n + 1

)
We therefore have the following elegant expression for column k in U

uk =

√
2

n + 1



cos
(

k· 12 ·π
n+1

)
cos

(
k· 32 ·π
n+1

)
...

cos
(

k·(n+ 1
2 )·π

n+1

)


∈ Rn+1.


