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Problem 1 Let A be the n×n Toeplitz matrix (i.e. a matrix where the elements
of each diagonal are equal to each other) given by

A = d



1 1/3 1/9 · · · 1/3n−1

1/3 1 1/3 · · · 1/3n−2

1/9 1/3 1 . . . ...
... ... . . . . . . 1/3

1/3n−1 1/3n−2 · · · 1/3 1

 ,

where d is a nonzero, real scalar.

a) Is A normal?

b) Are the eigenvalues of A real or complex?

c) Is A positive definite?

d) Is A nonsingular?

We now apply Jacobi iteration to solve the system of linear equations Ax = b,
where A is given above.

e) Will the Jacobi iteration converge for any initial vector?

f) Let L be the lower-triangular part of A (including the diagonal). Find L−1.
Hint: You may use the fact that the inverse of a lower-triangular Toeplitz
matrix is also a lower-triangular Toeplitz matrix.

If you did not find L−1 in f), you may from now on use L−1 equal to the Toeplitz
matrix with 1/(3d) on the diagonal and −1/(9d) on the subdiagonal, and zero
elsewhere. Note that this L−1 is not the correct answer to f).

g) Instead of using Jacobi iteration, we will now use Gauss–Seidel iteration.
What is the spectral radius of the iteration matrix used in the Gauss–Seidel
iteration?
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Problem 2 Consider the 2D Helmholtz equation

−∇2u− αu = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

where α is a positive constant, and f : Ω→ R. Using centered finite differences and
based on the diagonalization method for the 2D Poisson equation1, construct a
diagonalization method for solving the 2D Helmholtz equation.

Problem 3

a) In a few sentences, explain what a Krylov subspace is, and what the Arnoldi
process does.

Let A = I +B, where I is the identity matrix and B is a skew-symmetric matrix.

b) Consider the Arnoldi process for A. Show that the resulting Hessenberg
matrix will have the tridiagonal form

Hm =


1 −β2

β2 1 . . .
. . . . . . −βm

βm 1

 .

c) Show that by exploiting the structure of our matrix A = I + B, we can
simplify the Arnoldi MGS (modified Gram–Schmidt) process to:
r0 = b− Ax0, β1 = ‖r0‖2, v1 = r0/β1, v0 = 0
for j = 1, . . . ,m do

wj = Bvj + βjvj−1
βj+1 = ‖wj‖2
vj+1 = wj/βj+1

end for

Hint: This is similar to the Lanczos process.

d) Hm may be LU-factorized into

Hm = LmUm =


1
λ2 1

. . . . . .
λm 1



η1 −β2

. . . . . .
ηm−1 −βm

ηm

 .
1See the note by E. Rønquist.
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Use this LU-factorization to find an algorithm analogous to the direct Lanczos
(D-Lanczos) algorithm, but applied to our non-symmetric matrix A.

Problem 4

a) Find a singular value decomposition (SVD) of

M =

48 36 20
36 27 15
20 15 75

 .
Hint: The singular values are integers, and the largest singular value is double
the middle singular value.

b) How are the singular values and eigenvalues of M related?

c) Use the SVD to find the rank of M .

d) Find an approximation M̃ ≈ M so that rank M̃ = 1, and ‖M − M̃‖F is
minimal. Here, ‖·‖F is the Frobenius norm.


