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1 Consider the following model 1D boundary value problem (BVP) for the advection-
diffusion differential equation:

−Uxx +aUx = f , in Ω= (0,1)

U (0) = 1, U (1) =−1,
(1)

where a = a(x) and f = f (x) are given functions. We subdivide Ω into n identical sub-
intervals of length h = 1/n with end-points x j = j h, j = 0, . . . ,n. We will seek a numerical
approximation u j of the solution U (x j ) to (1) as a solution to the linear algebraic sys-
tem, obtained from (1) by replacing the differential operators with their finite-difference
approximations. The diffusive term will be approximated using a 3-point central scheme

Uxx (x j ) ≈ u j−1 −2u j +u j+1

h2 . (2)

For the advective term we consider three possible alternatives:

Ux (x j ) ≈ u j+1 −u j−1

2h
, Ux (x j ) ≈ u j −u j−1

h
, or Ux (x j ) ≈ u j+1 −u j

h
. (3)

These choices correspond to central, backward, and forward finite differences. Substitut-
ing (2) and one of the choices in (3) into (1) evaluated (collocated) at x = x j , we arrive
at a sparse linear system of equations Au = b, where u = (u1, . . . ,un−1)T is the vector of
unknowns; note that u0 =U (0) and un =U (1) are given for this BVP. In our case A and b
are of the form

A =


α1 δ1

γ2 α2 δ2
. . .

. . .
. . .

γn−2 αn−2 δn−2

γn−1 αn−1

 , b =


β1

β2
...

βn−2

βn−1

 ,

Let β j be expressed as β j = f (x j )+τ j , where τ j accounts for the boundary contributions.

a) Put a(x j ) = a j . Write down the expressions for α j , δ j , γ j and τ j for each of the
choices in (3).

b) For every j = 1, . . . ,n −1 select the discretization of the advection operator in (3) in
such a way that the resulting matrix A is guaranteed to be irreducibly row diagonally
dominant. (According to Theorem 4.9 in [S] such a selection guarantees the conver-
gence of Jacobi and Gauss–Seidel methods.) Note: we can vary the discretization of
the advection term from one collocation point x j to another depending on a j and h!
Hint: If we replace all non-zero entries in the matrix by one and view the resulting
matrix as the adjacency matrix of a directed graph, the original matrix is irreducible
if and only if the directed graph is strongly connected.
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From now on we will utilize the forward finite difference approximation of the advection
operator and assume a =−2, so α=α j , δ= δ j , and γ= γ j are independent of j .

c) Give an explicit formula for the eigenvalues of A.

Hint: Use the note “Eigenvalues of tridiagonal Toeplitz matrices”, which can be found
on the home page. No derivations are required.

We will now study the behaviour of the simple matrix-splitting methods for our problem.
Let A = D −E −F , where D, −E , and −F are respectively the diagonal, strict lower, and
strict upper parts of A (see section 4.1 in [S]).

d) Consider the Jacobi iteration u(k+1) =G J u(k)+D−1b, where G J = D−1(D−A). Starting
from the result in c), find the eigenvalues of the iteration matrix G J . What is the
spectral radius of G J ? What does Gershgorin’s theorem say about the eigenvalues of
G?

e) How would you expect the error e(k) = u −u(k) between the kth Jacobi iterate u(k)

and the solution u to Au = b to behave as a function of k and n? In other words, if
you double n, what must you do with k in order to get close to the same error e(k)?

Hint: (i) G J has n −1 distinct eigenvalues and therefore it is diagonalizable; (ii) you
may find Taylor series expansions with respect to a small parameter h = n−1 useful
when providing estimates.

f ) Consider again the problem (1) with exact solution given by U (x) = cos(πx). What is
the corresponding right-hand side f ? Let n = 20 and use Jacobi iteration to solve the
corresponding discrete system with this choice of f . Define u∗ to be the vector with
entries U (xi ), i = 1, . . . ,n−1, i.e. the continuous solution evaluated at the interior grid
points. Define also e(k)

∗ = u∗−u(k) and plot log(‖e(k)
∗ ‖∞) as a function of k. Iterate

until the error e(k)
∗ no longer changes. Next, increase n to 40, and repeat the solution

process. Finally, do it with n = 80. Compare the convergence behaviour for all three
cases (e.g. in one single plot). Are the results as expected? Can you explain your
observations?

Hint: u∗−u(k) = (u∗−u)+ (u −u(k))

g) In the notation of f), put n = 40 and compare the behavior of Jacobi and forward and
backward Gauss–Seidel methods:

u(k+1)
J = D−1(E +F )u(k)

J +D−1b,

u(k+1)
f GS = (D −E)−1Fu(k)

f GS + (D −E)−1b, and

u(k+1)
bGS = (D −F )−1Eu(k)

bGS + (D −F )−1b,

by for example plotting log(‖e(k)
∗ ‖∞) for all the methods as a function of k on the

same graph.

Could you provide a “physical” explanation as to why one version of Gauss–Seidel
outperforms the other on this problem?

h) Let IO and IE denote respectively the odd and even indices in 1,2, . . . ,n −1. Let us
reorder the unknowns u as [uIO ,uIE ], and similarly reorder the equations as [bIO ,bIE ].
Show that after the reordering the matrix A will have the following block-structure:[

DO AOE

AEO DE

]
,
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where DO and DE are diagonal matrices.

Identify the blocks DO , DE , AEO , AOE , and implement a Gauss-Seidel iteration (for-
ward or backward) for the reordered system. Note that one can utilize vectorization
in Matlab to “simultaneously” (in parallel on a multi-core system) update the un-
knowns in each block uIO and uIE . Thus, every Gauss-Seidel iteration should contain
two vectorized updates of block-unknowns.

Vizualize the behaviour of this method as you have previously done in g). Compare
the performance of this method with the ones you have tested in g).
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