
Norwegian University of Science and
Technology
Department of Mathematical
Sciences

TMA4205 Numerical
Linear Algebra

Fall 2015

Semester project – part 2

Part 2 of the semester project focuses on different approaches for solving the linear algebraic
system resulting from the discretization of Stokes equations. Namely, we consider the following
boundary value problem:

−∇2u+∇p = f, inΩ= (0,Lx)× (0,Ly),

∇·u = 0, inΩ,

u = g, on ∂Ω,

(1)

or in component form
−(∂2

xx +∂2
y y)u +∂x p = fx , inΩ,

−(∂2
xx +∂2

y y)v +∂y p = fy , inΩ,

∂x u +∂y v = 0, inΩ,

u = gx , on ∂Ω,

v = g y , on ∂Ω.

(2)

Physically, the vector function u = (u, v) and the scalar function p describe the motion of a slow
viscous incompressible liquid with a known velocity g = (gx , g y) on the boundary ∂Ω and with a
force f = (fx , fy) acting upon it inside the domainΩ.

Furthermore, owing to the incompressibility of the flow (equation ∇·u = 0) Gauss–Ostrogradsky
theorem implies that

0 =
∫
Ω
∇·u =

∫
∂Ω

n ·u =
∫
∂Ω

n ·g, (3)

where n is the outwards facing normal on ∂Ω. Thus the solutions only exist when the boundary
data g satisfies the compatibility condition (3), in which case the flow velocity can be determined
uniquely from (2), whereas the pressure is only defined up to an arbitrary additive constant.1

We will not describe possible discretizations of (2) in great detail. We utilize arguably the simplest
possible approach, where the square domain Ω is subdivided into nx ×ny small rectangular
cells with sides hx = Lx /nx and hy = Ly /ny as shown in Fig. 1. This leads to nx ny p-unknowns,
(nx −1)ny u-unknowns, and nx (ny −1) v-unknowns. If we store the unknowns in vectors U ∈

1Note, that the Stokes system only involves derivatives of the pressure, not the function itself.

October 19, 2015 Page 1 of 7

Semester project – part 2

Figure 1: Discretization of the Stokes equations utilized in this project (staggered grid discretiza-
tion); Lx = Ly = 1 and nx ×n = 4×4 cells are shown. Black, red, and blue dots show the locations
of p, u, and v unknowns, respectively. Red and blue squares show the locations at which the
boundary conditions gx and g y are evaluated; red and blue dots is where fx and respectively fy

is evaluated.

R(nx−1)ny , V ∈Rnx (ny−1), P ∈Rnx ny as follows:

U ≈

u(hx ,hy /2)
u(2hx ,hy /2)

...
u((nx −1)hx ,hy /2)

u(hx ,3hy /2)
...

u((nx −1)hx , (ny −1/2)hy)

, V ≈

v(hx /2,hy)
v(3hx /2,hy)

...
v((nx −1/2)hx ,hy)

v(hx /2,2hy)
...

v((nx −1/2)hx , (ny −1)hy)

,

P ≈

p(hx /2,hy /2)
p(3hx /2,hy /2)

...
p((nx −1/2)hx ,hy /2)

p(hx /2,3hy /2)
...

p((nx −1/2)hx , (ny −1/2)hy)

,

and similarly for the equation numbers, then the resulting linear algebraic system has a block
structure Ax 0 Bx

0 Ay By

B T
x B T

y 0

︸ ︷︷ ︸

=:A

U
V
P

=
Fx

Fy

G

 , (4)

where Ax ∈R(nx−1)ny×(nx−1)ny and Ay ∈Rnx (ny−1)×nx (ny−1) are symmetric positive definite matri-
ces resulting from the discretization of −(∂2

xx +∂2
y y)u and −(∂2

xx +∂2
y y)v ; Bx ∈R(nx−1)ny×nx ny and

October 19, 2015 Page 2 of 7

Semester project – part 2

By ∈Rnx (ny−1)×nx ny are matrices resulting from the discretization of ∂x p and ∂y p. Note that the
matrix on the left hand side of (4) is singular as pressures P are only determined up to a constant.

Matlab/Octave code stokes.m for generating the left and the right hand side for (4) is available
for downloading from the course’s wiki page. In addition to answering the questions described in
this document, you have to verify and document the correctness of each solution approach; see
Appendix A for an example.

1 Unpreconditioned CG iteration in the pressure space.

In this part, we consider the following approach for solving (4). First, we express U and
V in terms of P from the first and second block-equations of (4): U = A−1

x (Fx −Bx P),
V = A−1

y (Fy −By P). We then substitute these expressions into the last equation to obtain a
smaller system for the pressure unknowns only:

[B T
x A−1

x Bx +B T
y A−1

y By︸ ︷︷ ︸
=:S

]P = B T
x A−1

x Fx +B T
y A−1

y Fy −G . (5)

a) Given that both Ax and Ay are symmetric and positive definite (SPD), show that S is
symmetric and positive semi-definite.

S is not positive definite; in fact it is singular and kerS = ker[B T
x ,B T

y]T = span〈e〉, where
e ∈Rnx ny is a vector of all ones (you do not have to prove this; simply use this as a given
fact in the project). This is yet another manifestation of the fact that pressures are only
determined up to a constant.

b) Show that the system SP = b admits a solution if and only if eTb = 0.

c) Show that Sα := S +αeeT is SPD (hence non-singular) for any α> 0. Further, for any
b ∈Rnx ny such that eTb = 0 show that SαP = b =⇒ SP = b.

d) Implement a matrix-vector product routine P 7→ SαP , which can be used inside a CG
iteration. Do not form A−1

x , A−1
y , S, eeT, or Sα!2 You should pre-compute Cholesky

factorizations of Ax , Ay and perform backward-forward substitutions when neces-
sary.

Note: the choice of α affects the condition number of Sα. From here on use α =
1/(nxny)2 in the implementation.

Present numerical evidence that the condition number of Sα remains bounded
with respect to the mesh refinement by studying the dependence of the number of
unpreconditioned CG iterations needed to solve the linear system with this matrix in
the left hand side.

For fine discretizations of Stokes equations the accurate computation of a matrix-vector prod-
uct P 7→ SP , which requires solving auxiliary algebraic systems with matrices Ax and Ay at
every iteration becomes a major computational burden. Therefore, an alternative approach is
desirable.

2 Block-preconditioned FGMRES iteration.

2I repeat: do not form A−1
x , A−1

y , S, eeT, or Sα!

October 19, 2015 Page 3 of 7

Semester project – part 2

a) Show that solving the linear system in 1 c), d) is equivalent to solving the following
modification of (4): Ax 0 Bx

0 Ay By

B T
x B T

y −αeeT

︸ ︷︷ ︸

=:Aα

U
V
P

=
Fx

Fy

G

 . (6)

b) Compute a symbolic block-LU factorization of the matrix Aα defined in (6), that is,
find the unknown blocks in the representation

Aα =
 I 0 0

L21 I 0
L31 L32 I

︸ ︷︷ ︸

=:L

U11 U21 U31

0 U22 U32

0 0 U33

︸ ︷︷ ︸

=:U

(7)

The block-triangluar matrix U is an ideal right preconditioner for GMRES, which is es-
tablieshed in the following few steps:

c) Determine the spectrum of the preconditioned matrix AαU −1.

d) Show the following equality for the preconditioned matrix AαU −1:

(AαU −1 − I)2 = 0. (8)

e) Show that GMRES applied to AαU −1 converges in at most 2 iterations.

f) Describe, in detail, the computation of the matrix-vector product U −1W for some
given block vector W = [W T

U ,W T
V ,W T

P]T. Allowed “elementary steps” in the descrip-
tion are matrix-vector multiplications involving Sα and blocks of Aα, or linear system
solves involving these matrices/blocks.

We will now replace the ideal preconditioner U with a more practical version. In particular,
we replace all inverse matrices involved in the computation found in the previous step
with a suitable preconditioner. For example, in 1 d) we have learned that Sα may be
relatively efficiently preconditioned with the identity matrix. We will use an incomplete
Cholesky preconditioner for Ax , Ay (doc ichol in Matlab).

The resulting approximation to U −1 will be called Ũ −1 in the subsequent discussion.

g) Implement the matrix-vector multiplication with Ũ −1 without forming any inverse
or dense matrices. Use the implemented subroutine as the right preconditioner in
FGMRES applied to (6).3 Verify your implementation. Study the efficiency of this
preconditioning strategy on a sequence of refined meshes: compare the number
of unpreconditioned/preconditioned FGMRES iterations needed to obtain some
desired accuracy. Compare with the approach taken in 1 . Note: you may need to
experiment with different drop tolerances for the incomplete Cholesky precondi-
tioner/restart parameter of FGMRES to obtain a reasonable convergence speed.

h) One could try to obtain further improvements to the preconditioner constructed in
the previous step by using a (very) approximate incomplete Cholesky preconditioned
CG solve in place of a plain incomplete Cholesky preconditioner for the blocks Ax ,
Ay . Implement this version of the preconditioner (you can use pcg available in
Matlab). Does this strategy decrease the overall solution time, when compared with
the previous step?

3Two implementations of FGMRES, modified Gram-Schmidt (fgmres_mgs.m) and Householder reflections
(fgmres_h.m) based, are available for downloading from the course’s wiki page.

October 19, 2015 Page 4 of 7

Semester project – part 2

We will now eliminate the last non-scalable part from our block-preconditioning strategy, that is,
the incomplete Cholesky based approximation to A−1

x , A−1
y .

3 Geometric multigrid preconditioner for the Laplacian of velocity.

a) Implement a geometric multigrid V-cycle for solving the linear systems AxU = bu ,
AyV = bv . (One can use the same implementation for both systems, by replacing
the roles of x and y and reordering the unknowns/equations.) As input, the program
should take the initial guess, the right-hand side, the number of levels (or grids),
the number of pre-smoothings, and the number of post-smoothings. Use the direct
solver (backslash) to solve the problem on the coarsest level; under-relaxed Jacobi
iteration as a smoother; and linear interpolation to transfer information between
grids. Note: in the selected discretization scheme the right hand side of the algebraic
system is formed as hx hy f(xi , y j), where f(xi , y j) is a given function. Therefore if you
use injection as the coarsening operator, the coarsened residual r 2h should be further
multiplied with 4 = (2hx×2hy)/(hx×hy). You should not explicitly form the matrices
representing the inter-grid transfers.

It is advantageous to break the program down into several parts. The main routine
could for instance look like this:

function U = mgv_u(U0, rhs, Lx,Ly, nx,ny, nu1,nu2, level, max_level)

%

% U = mgv_u(U0, rhs, N, nu1, nu2, level, max_level) performs one

% multigrid V-cycle for the system A_x U = rhs

%

% input: U0 - initial guess

% rhs - right-hand side

% Lx, Ly - dimensions of the domain

% nx, ny - U0 and rhs are vectors of length (nx-1)ny

% nu1 - number of pre-smoothings

% nu2 - number of post-smoothings

% level - current level

% max_level - total number of levels

%

% output: U - numerical solution

% FORM A_x (nx, ny, Lx, Ly)

if level == max_level

% direct solve

U = A_x \ rhs;

else

% pre-smooth, e.g.

U = jacobi(A_x, U0, rhs, 2 / 3, nu1);

rh = rhs - A_x * U;

r2h = restriction_u(rh, nx,ny);

e2h = mgv_u(zeros((nx/2-1)*(ny/2),1), r2h, ...

Lx, Ly, nx/2, ny/2, nu1, nu2, level + 1, ...

max_level);

eh = interpolation_u(e2h, nx/2,ny/2);

October 19, 2015 Page 5 of 7

Semester project – part 2

U = U + eh;

U = jacobi(A_x, U, rhs, 2 / 3, nu2);

end

Before utilizing this algorithm within a block-preconditioner framework of 2 it is a
good idea to make sure that the multigrid implementation works as expected both
as a solver and a preconditioner for the Laplace problem. You can use the script
laplace_uv.m (analogous to stokes.m) for verification purposes.

b) Utilize one or several multigrid V-cycles as a preconditioner for Ax , Ay in the block-

preconditioning strategy of 2 . That is, replace the incomplete Cholesky-based
preconditioner with the one based on multigrid. Thus zu = A−1

x ru is approximated
as

z_u = zeros((nx-1)*ny, 1);

for j=1:Niter,

z_u = mgv_u(z_u, r_u, Lx, Ly, nx, ny, ...

nu1, nu2, 1, max_level);

end

Verify the implementation of this strategy. Compare its performance with that of the
preconditioner used in 2 g)–h).

A Verification

We consider a so-called Kovasznay flow benchmark:

function [u,v,p,fx,fy]=kovasznay

lambda = -1;

u = @(x,y) 1-exp(lambda*(x-0.5)).*cos(2*pi*y);

v = @(x,y) (lambda/2/pi)*exp(lambda*(x-0.5)).*sin(2*pi*y);

p = @(x,y) 0.5*(exp(2*lambda*(x-0.5)));

d2u = @(x,y) (-lambda^2 + 4*pi^2)*exp(lambda*(x-0.5)).*cos(2*pi*y);

d2v = @(x,y) (lambda^3/2/pi - 2*pi*lambda)*exp(lambda*(x-0.5)).*sin(2*pi*y);

px = @(x,y) lambda*exp(2*lambda*(x-0.5));

py = @(x,y) zeros(size(x)).*zeros(size(y));

fx = @(x,y) -d2u(x,y) + px(x,y);

fy = @(x,y) -d2v(x,y) + py(x,y);

The values of u, v on the boundary are then used as Dirichlet boundary conditions on the flow.
The problem is solved on a sequence of refined meshes and the error between the solution to the
discretized system and the analytical solution evaluated at grid points is measured and recorded.
For our discretization, if the linear algebraic system is solved accurately enough, the error in
velocity approximation should decay as O(h2) and in the pressure component as O(h), see Fig. 2.

For more details see stokes.m

October 19, 2015 Page 6 of 7

Semester project – part 2

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Error U

Error V

Error P

Figure 2: Discretization error decay as a function of grid size.

October 19, 2015 Page 7 of 7

