

4	Given the data, the "naïve" basis for Krylov subspace is orthonormal; in fact it is the canon-
	ical basis in \mathbb{R}^5 : $A^k r_0 = A^k b = A^k e_1 = e_{k+1}, k = 0, \dots, 4$. Therefore $V_m = [e_1, \dots, e_m]$ after m
	steps of Arnoldi iteration and $H_m = V_m^T A V_m$ is obtained by taking first <i>m</i> rows/columns
	from A.

Note that for m = 1, ..., 4 the matrices H_m are singular with the first row being identically equal to zero. As a result, it is impossible to solve the equations $H_m y_m = \beta e_1, m = 1, ..., 4$, appearing in FOM algorithm (in our case $\beta = ||r_0||_2 = 1$).

For the last iteration we have $H_5 = A$, $V_5 = I$, $x_5 = y_5 = e_5$.

1

2

3