

Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4205 Numerical Linear Algebra Fall 2015

Solutions to exercise set 6

1 a) Given the data, the "naïve" basis for Krylov subspace is orthonormal; in fact it is the canonical basis in $\mathbb{R}^{5}: A^{k} r_{0}=A^{k} b=A^{k} e_{1}=e_{k+1}, k=0, \ldots, 4$. Therefore $V_{m}=$ $\left[e_{1}, \ldots, e_{m}\right.$] after m steps of Arnoldi.
A direct computation shows that

$$
\bar{H}_{5}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

from which the submatrices $\bar{H}_{k}, k=1, \ldots, 4$ are deducible. Note that $h_{6,5}=0$, that is, Arnoldi process (understandably) "breaks" at this iteration, as $K_{5}\left(A, r_{0}\right)$ spans the whole space.
b) At iteration 1 we need to find a Givens rotation that "eliminates" the second component of the vector $(0,1)^{\mathrm{T}}$. Using e.g. formulas at the top of p. 168 in [Saad], we find

$$
\Omega_{1}=\left(\begin{array}{cc}
0 & 1 \tag{1}\\
-1 & 0
\end{array}\right), \quad \text { and } \quad \bar{R}_{1}=\Omega_{1} \bar{H}_{1}=\Omega_{1}\binom{0}{1}=\binom{1}{0}
$$

The same story holds at iterations $k=2,3,4$ with $\Omega_{k}=\Omega_{1}$ and $R_{k}=I_{k}, k \times k$ identity matrix.
\bar{R}_{5} can be computed knowing the QR factorization of \bar{H}_{4} as follows. First, we compute

$$
\left(\begin{array}{cc}
Q_{4} & 0 \\
0 & 1
\end{array}\right) \bar{H}_{5}=\left(\begin{array}{cc}
Q_{4} \bar{H}_{4} & Q_{4} e_{1} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\bar{R}_{4} & e_{5} \\
0 & 0
\end{array}\right),
$$

where Q_{4} being the result of successive application of $\Omega_{1}, \ldots, \Omega_{4}$ to rows $(1,2), \ldots,(4,5)$, e_{i} is the i-th canonical basis vector in \mathbb{R}^{5}, and we used the easily verifiable formula $Q_{k} e_{1}=(-1)^{k} e_{k+1}, k=1, \ldots, 4$. Since the resulting matrix is already upper triangular, we can simply take $\Omega_{5}=I_{2 \times 2}$, the 2×2 identity matrix. In particular, $R_{5}=I_{5 \times 5}$.
c) To solve the least squares problems appearing in GMRES we need to find $\bar{g}_{k}=$ $Q_{k}\left(\beta e_{1}\right)$, where $\beta=\left\|r_{0}\right\|_{2}=1$. For $k=1, \ldots, 4$ we get $\bar{g}_{k}=(-1)^{k} e_{k+1}$, and fpr $k=5$ we get $\bar{g}_{5}=e_{5} \in \mathbb{R}^{6}$. Knowing that $R_{k}=I_{k \times k}, k=1, \ldots, 5$ we compute $y_{k}=R_{k}^{-1} g_{k}$, which results in $y_{k}=0, k=1, \ldots, 4$ and $y_{5}=e_{5}$. Finally we get $x_{k}=x_{0}+V_{k} y_{k}$, resulting in $x_{k}=x_{0}, k=1, \ldots, 4$, and $x_{5}=e_{5}$.

2 Let $H_{m-1}, \bar{H}_{m-1}, V_{m-1}=\left[v_{1}, \ldots, v_{m-1}\right], V_{m}=\left[\nu_{1}, \ldots, v_{m}\right]$ be the usual matrices obtained after $m-1$ steps of Arnoldi process starting from $\nu_{1}=A \nu_{0} /\left\|A \nu_{0}\right\|_{2}$, where $\nu_{0}=r_{0}$. We will also write $\bar{V}_{m}=\left[v_{0}, V_{m-1}\right]$.

Since V_{m-1} contains the orthonormal basis for $\mathscr{K}_{m-1}\left(A, A r_{0}\right)$, the columns of \bar{V}_{m} form a basis for $\mathcal{K}_{m}\left(A, r_{0}\right)$.
a) As in any residual-projection algorithm, in GMRES we are looking for an approximate solution in the form $x_{m}=x_{0}+\bar{V}_{m} y_{m}$, where the unknowns $y_{m} \in \mathbb{R}^{m}$ are chosen in such a way as to minimize the 2 -norm of the residual

$$
\begin{aligned}
r_{m} & =r_{0}-A \bar{V}_{m} y_{m}=r_{0}-\left[A v_{0}, A V_{m-1}\right] y_{m}=r_{0}-\left[\left\|A v_{0}\right\|_{2} v_{1}, V_{m} \bar{H}_{m-1}\right] y_{m} \\
& =r_{0}-V_{m}\left[\left\|A v_{0}\right\|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}
\end{aligned}
$$

As a result

$$
\left\|r_{m}\right\|_{2}=\left\|\left(I-V_{m} V_{m}^{\mathrm{T}}\right) r_{0}+V_{m}\left(V_{m}^{\mathrm{T}} r_{0}-\left[\left\|A v_{0}\right\|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}\right)\right\|_{2}
$$

Note that $V_{m} V_{m}^{\mathrm{T}}$ an orthogonal projector onto the subspace spanned by $\left[\nu_{1}, \ldots, v_{m}\right]$ (see Section 1.12 .3 in [Saad]) and $I-V_{m} V_{m}^{\mathrm{T}}$ is an orthogonal projector onto the orthogonal complement of the subspace spanned by $\left[\nu_{1}, \ldots, v_{m}\right.$]. Therefore, ($I-$ $\left.V_{m} V_{m}^{\mathrm{T}}\right) r_{0} \perp V_{m}\left(V_{m}^{\mathrm{T}} r_{0}-\left[\left\|A \nu_{0}\right\|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}\right)$ and

$$
\begin{aligned}
\left\|r_{m}\right\|_{2}^{2} & =\left\|\left(I-V_{m} V_{m}^{\mathrm{T}}\right) r_{0}\right\|_{2}^{2}+\left\|V_{m}\left(V_{m}^{\mathrm{T}} r_{0}-\left[\left\|A v_{0}\right\|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}\right)\right\|_{2}^{2} \\
& =\left\|\left(I-V_{m} V_{m}^{\mathrm{T}}\right) r_{0}\right\|_{2}^{2}+\left\|V_{m}^{\mathrm{T}} r_{0}-\left[\left\|A v_{0}\right\|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}\right\|_{2}^{2} .
\end{aligned}
$$

The first term is independent from y_{m}, whereas the second can be eliminated by solving a linear algebraic system with a triangular matrix [\| $\left.A v_{0} \|_{2} e_{1}, \bar{H}_{m-1}\right] y_{m}=V_{m}^{\mathrm{T}} r_{0}$ (recall: \bar{H}_{m-1} is upper Hessenberg).
b) From the computations above we get that $r_{m}=\left(I-V_{m} V_{m}^{\mathrm{T}}\right) r_{0} \perp \operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$.
c) Owing to the same argument: $\left\|r_{m}\right\|_{2}=\left\|\left(I-V_{m} V_{m}^{\mathrm{T}}\right) r_{0}\right\|_{2}$, which is computable without the knowledge of y_{m} or x_{m}.

3 After applying m steps of Arnoldi process to a matrix A we obtain the matrix V_{m} containing the orthonormal basis for $\mathcal{K}_{m}\left(A, v_{1}\right)$ and an upper Hessenberg matrix H_{m} satisfying the equality $H_{m}=V_{m}^{\mathrm{T}} A V_{m}$. Assuming that $A^{\mathrm{T}}=-A$, the matrix on the right hand side of the equality sign is anti-symmetric. Therefore H_{m} is also antisymmetric and thus has only two non-zero diagonals:

$$
H_{m}=\left(\begin{array}{cccc}
0 & -h_{2,1} & \cdots & 0 \tag{2}\\
h_{2,1} & 0 & \ddots & 0 \\
0 & \ddots & \ddots & -h_{m, m-1} \\
0 & \cdots & h_{m, m-1} & 0
\end{array}\right)
$$

As a result, Arnoldi process simplifies to (note: only the sub-diagonal of H is computed):

```
v}:=v/|v\mp@subsup{|}{2}{},\mp@subsup{v}{0}{}:=0,\mp@subsup{h}{1,0}{}:=
for j=1,...,m do
    wj:=A v
    hj+1,j}:=|\mp@subsup{w}{j}{}\mp@subsup{|}{2}{
    if }\mp@subsup{h}{j+1,j}{}=0\mathrm{ then stop
    end if
    vj+1}:=\mp@subsup{w}{j}{}/\mp@subsup{h}{j+1,j}{
```


8: end for

4 The short story is: all residuals need to be scaled by δ, but the search space and the constraint space remain the same. Indeed, span $\left\langle r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\rangle=\operatorname{span}\left\langle\delta r_{0}, \delta^{2} A r_{0}, \ldots, \delta^{m} A^{m-1} r_{0}\right\rangle$. Furthermore, $r_{m} \perp \mathscr{L}$ if and only if $\delta r_{m} \perp \mathscr{L}$, since \mathscr{L} is a linear space.

