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Solutions to exercise set 7

1 Proceeding as in Proposition 6.32 in [Saad] we obtain the estimate

‖rm‖2

‖r0‖2
≤ κ2(X ) min

p̃m∈Pm :p(0)=1
max

i
|p̃m(λi )|

≤ κ2(X ) min
p̃m∈Pm :p(0)=1

max{|p̃m(λ̄)|, max
λmin≤λ≤λmax

|p̃m(λ)|}

We now replace the minimum polynomial p̃m with

p̄m(λ) = Cm−1(t (λ))

Cm−1(t (0))

λ̄−λ
λ̄

,

which is mth degree polynomial renormalized so that p̄m(0) = 1. By estimating the first
factor as in Theorem 6.29 in [Saad] we obtain the folowing:

‖rm‖2

‖r0‖2
≤ 2κ2(X )

[√
λmax −

√
λmin√

λmax +
√
λmin

]m−1 max{|λ̄−λmin|, |λ̄−λmax|}
|λ̄| .

If A is normal and |λ̄| >> max{λmin,λmax} thenκ2(X ) = 1 and max{|λ̄−λmin|, |λ̄−λmax|}/|λ̄| ≈
1.

2 a) A is a lower triangular matrix with non-zero diagonal =⇒ non-singular. A direct
computation shows that x∗

i = (−1)i+1.

b) r0 = e1. An inductive argument utilizing the equality Aei = ei +ei+1, i < n, shows that
Km(A,r0) = span〈e1, . . . ,em〉, 1 ≤ m ≤ n.

c) By construction xm ∈ 0+Km(A,r0), in particular (xm)m+1 = ·· · = (xm)n = 0. This and
the formula for x∗ imply immediately that ‖xm − x∗‖2

2 ≥
∑n

i=m+1(−1)2(i+1) = n −m.
As ‖− A−1rm‖2 = ‖xm −x∗‖2 and therefore ‖rm‖2 ≥ ‖A−1‖−1

2 ‖xm −x∗‖2, from which
the required bound follows.

d) Perhaps the easiest way in the present situation when the matrix is small is to find
the basis vectors r0, Ar0, . . . , Am−1r0 directly and then solve a few small least squares
problems producing the polynomial coefficients of pm−1.

For example, when m = 1 we solve ‖r0 − y1 Ar0‖2 → min, or in Matlab notation

r_0 = [1 0 0 0 0]’

A = spdiags(ones(5,2),-1:0,5,5)

y_1 = (A*r_0)\r_0

from which y1 = 0.5, p̃1(t ) = 1−0.5t .

For m = 2 we have ‖r0 − y1 Ar0 − y2 A2r0‖2 → min, or in Matlab notation
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Figure 1: Optimal polynomials p̃i for A (left) and (A+ AT)/2 (right). Eigenvalues are marked with
vertical dotted lines.

y_2 = [A*r_0, A^2*r_0]\r_0

which yields y = [1,−1/3]′ and p̃2(t ) = 1− t +1/3t 2.

Proceeding in this way we find that p̃3(t ) = 1−3/2t + t 2 −1/4t 3, p̃4(t ) = 1−2t +2t 2 −
1t 3 +1/5t 4, p̃5(t) = 1−5t +10t 2 −10t 3 +5t 4 − t 5 = (1− t)5 = det(I − t A), see Fig. 1
(left).

Finally

i ‖p̃i (A)‖2 ‖p̃i (A)r0‖2 ‖p̃i ((A+ AT)/2)‖2 ‖p̃i ((A+ AT)/2)r0‖2

1 0.9595 0.7071 0.8928 0.4472
2 0.8921 0.5774 0.7474 0.2673
3 0.8036 0.5000 0.5797 0.1826
4 0.7027 0.4472 0.4071 0.1348
5 0 0 0 0

e) The eigenvalues of a lower triangular matrix appear on its diagonal, thus σ(A) = {1}.
The eigenvalue-based error bounds rely critically on the diagonalizability of A, say
A = X −1ΛX , when the estimate

‖p(A)‖2 ≤ κ2(X )max
i

|p(λi )|

is used. Without diagonalizability this argument cannot be applied; one may only
claim that

‖p(A)‖2 ≤ κ2(X )‖p(J )‖2,

where A = X −1 J X is the Jordan canonical form of A. The behaviour of powers of
Jordan blocks is relatively complicated: see Section 4.2.1 in [Saad].
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