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Exercise set 1

1 We say that two norms ‖·‖α and ‖·‖β are equivalent in Cn if there exist positive
constants c1 and c2 independent of x, such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α

for all x ∈ Cn. Show that ‖·‖1, ‖·‖2 and ‖·‖∞ are equivalent in Cn by showing that
for any vector x ∈ Cn, the following inequalities hold:

a) ‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2,

b) ‖x‖∞ ≤ ‖x‖2 ≤
√
n ‖x‖∞,

c) ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

2 Let ‖·‖ be a vector norm on Cn and consider the corresponding induced (or natural)
matrix norm ‖·‖. Show that ρ(A) ≤ ‖A‖ where ρ(A) is the spectral radius of A.

3 In the lecture (and in Saad’s book), the matrix norm induced by ‖·‖p and ‖·‖q was
defined as

‖A‖pq := max
x∈Cm\{0}

‖Ax‖p
‖x‖q

.

That is, the maximum is taken over all possible complex vectors x.

If A ∈ Rn×m, one can also define its real matrix norm

‖A‖pq,R := max
x∈Rm\{0}

‖Ax‖p
‖x‖q

.

Consider now specifically the matrix

A =

(
1 −1
1 1

)
.

a) Compute the real matrix norm ‖A‖1∞,R.

b) Using the vector x = (1 + i, 1− i)T in the definition of the matrix norm, show
that, for this specific matrix, we have ‖A‖1∞ > ‖A‖1∞,R.

4 Suppose that E = uvH is the outer product (or tensor product) of two vectors u, v ∈
Cn.
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a) Show that ‖E‖2 = ‖u‖2‖v‖2.

b) Decide if this also holds for the Frobenius norm, i.e., decide if ‖E‖F = ‖u‖2‖v‖2.

5 What can be said about the eigenvalues of a unitary matrix?

6 We will here investigate how the storage format and structure of a matrix influence
the performance of the LU factorization of the matrix. Matlab has two storage
formats for matrices. We can either store them as full matrices, that is, all elements
of the matrix are stored, or we can store them as sparse matrices where only non-zero
elements and their positions are stored. The commands

F = full(S)
S = sparse(F)

convert a sparse matrix S into a full matrix F and a full matrix F into a sparse
matrix S respectively. To depict the non-zero elements of A one may use the following
command:

spy(A)

a) We consider here the one-dimensional Poisson problem

−∂
2u

∂x2
= 4π2 sin(2πx), x ∈ [0, 1],

u = 0, x ∈ {0, 1}.

The Matlab file poisson1.m, which can be fetched from the web page of the
course, generates the system of linear equations obtained from discretizing the
problem with a finite difference method on a uniform grid. For instance, the
command

[A, b] = poisson1(n)

will return the system of equations with n unknowns. The matrix A will here
be stored as a full matrix.
i) For n = 900, 1600, 2500, 3600, generate the system of linear equations and

measure the time it takes to solve the system with Gaussian elimination (i.e.
with LU factorization). This can be done, for instance, with:

[A, b] = poisson1(n)
tic; [L, U] = lu(A); x = U \ (L \ b); toc

ii) Repeat the experiment above, but convert A to a sparse matrix before the
system is solved. Compare with i) and try to explain the difference.

(Note that it might be necessary to repeat the experiments several times in order
to obtain reliable results.)

b) We now consider the two-dimensional Poisson problem

−
(
∂2u

∂x2
+
∂2u

∂y2

)
= 5π2 sin(2πx) sin(πy),

u = 0,

(x, y) ∈ [0, 1]× [0, 1],

x = 0, x = 1, y = 0, or y = 1.
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The Matlab file poisson2.m generates the system of linear equations we obtain
when we discretize the above problem with a finite difference method. The
command

[A, b] = poisson2(n)

will generate a system with N = n2 unknowns.

i) For n = 30, 40, 50, 60, generate the system of linear equations and measure
the time it takes to solve the system with Gaussian elimination. Compare
with a).

ii) Repeat step i), but convert A into a sparse matrix before solving the system.
Compare with a). Check the structure of the matrices before and after
Gaussian elimination in a) and b).

spy(A)
[L, U] = lu(A)
spy(L); spy(U)
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