1 Saad, Exercise 5.3 In Section 5.3.3, it was shown that using a one-dimensional projection method with $\mathcal{K}=\operatorname{span}\left\{A^{T} r\right\}$ and $\mathcal{L}=\operatorname{span}\left\{A A^{T} r\right\}$ is equivalent to using the steepest descent method on the normal equations $A^{T} A x=A^{T} b$ for a matrix $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$.

Show that an orthogonal projection method with solution space $\mathcal{K}=\mathcal{L}$ for solving the equation $A^{T} A x=A^{T} b$ is equivalent to applying a projection method onto \mathcal{K} orthogonally to $\mathcal{L}=A \mathcal{K}$ for the problem $A x=b$.

2 Algorithm 6.1 in Saad is implemented in the MATLAB-function arnoldi_gs.m. This algorithm constructs an orthogonal basis for the Krylov subspace $\mathcal{K}_{m}(A, v)$ based on a classical Gram-Schmidt procedure. Test this function on the matrix A generated by poisson2.m (use sparse matrices) for different values of m and $N=n^{2}$. For instance, choose $N=100, v=e_{1}$, and $m=10,20,30,40,50$.
a) Test to what extent the relation $V_{m}^{T} A V_{m}=H_{m}$ from Proposition 6.5 in Saad is fulfilled. Also check if the vectors v_{1}, \ldots, v_{m} really are orthonormal, i.e., check whether $V_{m}^{T} V_{m}=I_{m}$ (exactly).
b) Modify the function arnoldi_gs.m such that it uses modified Gram-Schmidt. Repeat the experiments from the previous question.

3 Assume that a real matrix A is anti-symmetric, that is, $A^{T}=-A$. Explain the structure of the Hessenberg matrix H_{n} resulting from Arnoldi process in this case. Explain how this structure can be utilized for an efficient implementation of the Arnoldi process in this case.

