

TMA4205 Numerical Linear Algebra Fall 2016

Exercise set 4

1 Saad, Exercise 5.3 In Section 5.3.3, it was shown that using a one-dimensional projection method with $\mathcal{K} = \operatorname{span}\{A^Tr\}$ and $\mathcal{L} = \operatorname{span}\{AA^Tr\}$ is equivalent to using the steepest descent method on the normal equations $A^TAx = A^Tb$ for a matrix $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$.

Show that an orthogonal projection method with solution space $\mathcal{K} = \mathcal{L}$ for solving the equation $A^T A x = A^T b$ is equivalent to applying a projection method onto \mathcal{K} orthogonally to $\mathcal{L} = A \mathcal{K}$ for the problem A x = b.

- 2 Algorithm 6.1 in Saad is implemented in the MATLAB-function arnoldi_gs.m. This algorithm constructs an orthogonal basis for the Krylov subspace $\mathcal{K}_m(A, v)$ based on a classical Gram-Schmidt procedure. Test this function on the matrix A generated by poisson2.m (use sparse matrices) for different values of m and $N = n^2$. For instance, choose N = 100, $v = e_1$, and m = 10, 20, 30, 40, 50.
 - a) Test to what extent the relation $V_m^T A V_m = H_m$ from Proposition 6.5 in Saad is fulfilled. Also check if the vectors v_1, \ldots, v_m really are orthonormal, i.e., check whether $V_m^T V_m = I_m$ (exactly).
 - b) Modify the function arnoldi_gs.m such that it uses modified Gram-Schmidt. Repeat the experiments from the previous question.
- **3** Assume that a real matrix A is anti-symmetric, that is, $A^T = -A$. Explain the structure of the Hessenberg matrix H_n resulting from Arnoldi process in this case. Explain how this structure can be utilized for an efficient implementation of the Arnoldi process in this case.