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1. Definition and Existence

Theorem 1. Assume that A ∈ Rm×n. Then there exist orthogonal matrices U ∈
Rm×m and V ∈ Rn×n, and values σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 with p = min{m,n},
such that

A = UΣV T ,

where Σ ∈ Rm×n is a diagonal matrix with diagonal entries σ1,. . . ,σp, that is,

Σ =



σ1 0 | 0 . . . 0

σ2 |
...

...
. . . |

. . . |
...

...
0 σm | 0 . . . 0


in case m ≤ n, and

Σ =



σ1 0
σ2

. . .

. . .

0 σn
0 . . . 0
...

...
0 . . . 0


in case m ≥ n. The values σk are uniquely determined by A, and are called the
singular values of A.

Idea of proof. We assume without loss of generality that A 6= 0, else the assertion
is trivial (we may choose Σ = 0 and any orthogonal matrices U and V ). Moreover,
we note that the decomposition A = UΣV T is equivalent to stating that UTAV is
a diagonal matrix with non-negative, decreasing diagonal entries.

We now recall that the 2-norm of the matrix A is defined as

(1) ‖A‖2 := max
‖x‖2=1

‖Ax‖2.

Let x ∈ Rn be any x with ‖x‖2 = 1 where the maximum in (1) is attained. Define
moreover

σ1 := ‖A‖2 = ‖Ax‖2 and y :=
Ax

‖Ax‖2
=
Ax

σ1
.

Complete x to an orthonormal basis

V = (x|v2| . . . |vn)
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of Rn, and y to an orthonormal basis

U = (y|u2| . . . |um)

of Rm. Then the product UTAV is of the form

UTAV =

(
σ1 wT

0 Â

)
=: B

for some vector w ∈ Rn−1 and a matrix Â ∈ R(m−1)×(n−1).
Now let

z =

(
σ1
w

)
.

Then

Bz =

(
σ2
1 + wTw

Âw

)
and therefore

‖Bz‖22 = (σ2
1 + wTw)2 + ‖Âw‖22 ≥ (σ2

1 + wTw)2 = (σ2
1 + wTw)‖z‖22 ≥ σ2

1‖z‖22
with equality holding only if w = 0. However, since U and V are orthogonal, we
have ‖B‖2 = ‖A‖2 = σ1 and therefore

‖Bz‖22 ≤ σ2
1‖z‖22.

Therefore w = 0 and we have

UTAV =

(
σ1 0

0 Â

)
.

Using induction over p (or: applying the same idea to Â), we arrive at the
claimed decomposition. Note here that the numbers σk are indeed decreasing, as
σ1 = ‖A‖2 ≥ ‖Â‖2 = σ2. �

From the previous theorem it follows that we can write

A = U Σ V T

∈ ∈ ∈ ∈

Rm×n Rm×m Rm×n Rn×n

However, in particular if m and n are very different, this decomposition of A con-
tains lots zero columns or rows in Σ, which make the last columns of either U or
V redundant. It can thus be an advantage to use instead a reduced singular value
decomposition either of the form

A = Û Σ̂V T

in case m > n with

Σ̂ =


σ1 0

. . .

. . .

0 σn


and

Û = (u1|u2| . . . |un) ∈ Rm×n,
or

A = U Σ̂V̂ T
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in case m < n with

Σ̂ =


σ1 0

. . .

. . .

0 σm


and

V̂ = (v1|v2| . . . |vm) ∈ Rn×m.
That is, we reduce the rectangular matrix Σ to a square matrix containing the sin-
gular values, and remove all the redundant columns from either U or V , depending
on which is the bigger matrix.

In the following, we will always use the reduced singular value decomposition,
and simply write this reduced decomposition as A = UΣV T . However, it is always
necessary to keep in mind that one of the matrices U and V will be rectangular.

2. Matrix Properties via the SVD

An alternative way of formulating the singular value decomposition is to write

(2) A =

p∑
k=1

σkukv
T
k ,

where p = min{m,n}, and uk, vk denote the k-th column of U and V , respectively.
In particular, we obtain with this notation that

Ax =

p∑
k=1

σk(vk, x)uk

for every x ∈ Rn.
Now let

r := max
{
k : σk > 0

}
.

That is, we have

σ1 ≥ σ2 ≥ . . . ≥ σr > 0 = σr+1 = . . . = σp.

Then the decomposition (2) shortens to

A =

r∑
k=1

σkukv
T
k ,

and we have

Ax =

r∑
k=1

σr(vk, x)uk.

Since the vectors uk are linearly independent, we immediately obtain the following:

• We have rankA = r.
• The range of A is

RanA = span{u1, . . . , ur}.
• The kernel of A is

kerA = span{v1, . . . , vr}⊥.
Additionally, we have seen in the proof of the existence of the singular value

decomposition that
‖A‖2 = σ1,

and it is possible to show that

‖A‖F = (σ2
1 + . . .+ σ2

r)1/2.
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Here ‖A‖F denotes the Frobenius norm of A given by

‖A‖F =
(∑
i,j

a2ij

)1/2
.

Theorem 2. If A has the singular value decomposition A = UΣV T , then the
matrix

Ak :=

k∑
j=1

σjujv
T
j

with 1 ≤ k ≤ p solves the optimisation problems

min
rank(B)≤k

‖A−B‖2

and

min
rank(B)≤k

‖A−B‖F .

Moreover

‖A−Ak‖2 = σk+1

and

‖A−Ak‖F =
( r∑
j=k+1

σ2
j

)1/2
.

In other words, the first terms of the singular value decomposition provide the
best low rank approximations of the matrix A both with respect to the 2-norm and
with respect to the Frobenius norm.

3. SVD and transposition

Assume that A ∈ Rm×n has the singular value decomposition A = UΣV T . As a
consequence, we have

AT = V ΣTUT = V ΣUT ,

which is a singular value decomposition of AT . In particular, this implies that A
and AT have the same singular values, which in turn implies that ‖A‖2 = ‖AT ‖2.

Next we note that we always have that the matrices UTU and V TV are always
the identity matrices on the respective spaces. That is, if m ≥ n we have U ∈ Rm×n,
V ∈ Rn×n, and

UTU = In×n = V TV,

whereas if n ≥ m we have U ∈ Rm×m, V ∈ Rn×m, and

UTU = Im×m = V TV.

As a consequence,

ATA = V ΣUTUΣV T = V Σ2V T

and

AAT = UΣV TV ΣUT = UΣ2U2.

This shows that the values σ2
1 ,. . . ,σ2

r are exactly the non-zero eigenvalues of both
the matrices ATA and AAT with corresponding eigenvectors uk (for ATA) and vk
(for AAT ), respectively.

Example 3. Consider the matrix

A =

(
1 c
0 1

)
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with c 6= 0. This matrix has a single geometric eigenvalue λ1 = 1 with corresponding
eigenvector (1, 0). A possible Jordan decomposition of A reads

A =

(
c−1 0
0 1

)(
1 1
0 1

)(
c 0
0 1

)
.

Next we will compute a singular value decomposition of A. To that end, we will
compute first the eigenvalues and eigenvectors of AAT (doing the computations
with ATA would work fine as well). We have

AAT =

(
1 + c2 c
c 1

)
with eigenvalues

λ1,2 = 1 +
c2

2
±
√
c2 +

c4

4
.

As a consequence, the singular values of A are
√
λ1 and

√
λ2, or

σ1 =

√
1 +

c2

2
+

√
c2 +

c4

4
and σ2 =

√
1 +

c2

2
−
√
c2 +

c4

4
.

In the particular case c = 8/3 (which noticeable simplifies all the calculations)
we have

σ1 =
√
λ1 = 3 and σ2 =

√
λ2 = 1/3.

Moreover, the eigenvalues of AAT corresponding to λ1 and λ2 are

u1 =
1√
10

(
3
1

)
and u2 =

1√
10

(
−1
3

)
.

Thus we can write

AAT = UΣ2UT =
1√
10

(
3 −1
1 3

)(
9 0
0 1/9

)
1√
10

(
3 1
−1 3

)
.

Moreover, the matrix U in this decomposition of AAT can be chosen to be precisely
the matrix U in the singular value decomposition A = UΣV T of A. Now the
equation A = UΣV T implies that

V = ATUΣ−1 =
1√
10

(
1 −3
3 1

)
.

We therefore obtain the singular value decomposition(
1 8/3
0 1

)
=

1√
10

(
3 −1
1 3

)(
3 0
0 1/3

)
1√
10

(
1 3
−3 1

)
.

We note that the singular value decomposition allows for a useful geometric
interpretation of linear mappings: In the case m = n, the mappings U and V are
orthogonal, and thus either rotations or reflections. In particular, the mappings
U and V leave the unit sphere unchanged. On the other hand, the mapping Σ is
diagonal and therefore transforms the unit sphere to an ellipse with semi-axes of
lengths σ1,. . . ,σn parallel to the coordinate axes. In total, the mapping A = UΣV T

transforms the unit sphere into an ellipse with semi-axes of lengths given by the
singular values, parallel to u1,. . . ,un.

In the case n > m, the situation is similar, although the application of V T will be
the composition of a rotation/reflection with a projection onto a lower-dimensional
space, while for n < m the result will be an n-dimensional ellipse embedded in Rm.
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4. Pseudoinverses

Assume now that A ∈ Rm×n has the singular value decomposition

A = UΣV T ,

that m > n and that A has full rank, that is, rankA = n. Then the matrix
Σ ∈ Rn×n is invertible and we can define

A† := V Σ−1UT ∈ Rn×m,

the pseudo-inverse (or Moore–Penrose inverse) of A.
Note that

A†A = V Σ−1UTUΣV T = V V T = In×n,

whereas

AA† = UΣV TV Σ−1UT = UUT

is the orthogonal projection onto the range of A.

Lemma 4. If m > n, rankA = n, and b ∈ Rm, then A†b is the solution of the
least-squares problem

(3) min
x∈Rn
‖Ax− b‖22.

Proof. Since the matrix ΣV T ∈ Rn×n is invertible with inverse V Σ−1, the vector
x† solves (3), if and only if we have x† = V Σ−1y, where y solves the optimisation
problem

min
y∈Rn
‖Uy − b‖22.

That is, Uy is simply the orthogonal projection of b onto the range of U , which
means that Uy = UUT b. Since U ∈ Rm×n with n < m is injective, it follows that
y = UT b. Thus x† = V Σ−1y = V Σ−1UT b = A†b is the unique solution of (3). �

Now assume that m < n, but that A ∈ Rm×n still has full rank (that is, rankA =
m). Then we can again define

A† := V Σ−1UT ,

as Σ ∈ Rm×m is invertible. However, in this situation we have

AA† = UUT = Im×m,

whereas

A†A = V V T

is the projection onto RanV = (kerA)⊥.

Lemma 5. If m < n, rankA = m, and b ∈ Rm, then A†b solves the optimisation
problem

(4) min
x
‖x‖22 subject to Ax = b.

Proof. First we note that x† := A†b satisfies Ax† = AA†b = b, which means that x†

is indeed admissible for (4). Now assume that y is another vector satisfying Ay = b.
Then A†Ay = A†b = x† and therefore

‖A†Ay‖2 = ‖x†‖2.

On the other hand, A†A = V V T is an orthogonal projection and therefore

‖A†Ay‖2 ≤ ‖y‖2
with equality only if A†Ay = y. This shows that indeed x† is the unique solution
of (4). �
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Now we note that in both situations discussed above we could alternatively write

A† :=

p∑
k=1

σ−1k vku
T
k =

r∑
k=1

σ−1k vku
T
k .

This last definition, however, is still meaningful if the matrix A does not have full
rank. That is, for arbitrary A ∈ Rm×n of rank r we can define the pseudoinverse

A† :=

r∑
k=1

σ−1k vku
T
k ∈ Rn×m.

In this case, usually neither AA† nor A†A can be an identity matrix, but A† still
retains some semblance of an inverse of A, as the following result shows:

Lemma 6. For every A ∈ Rm×n the following identities hold:

• (A†)† = A,
• A†AA† = A†,
• AA†A = A.

Moreover, the vector A†b comes as close to solving the linear system Ax = b as
one can reasonably hope for:

Theorem 7. If A ∈ Rm×n and b ∈ Rm, then x† := A†b solves the bilevel optimi-
sation problem

min
x
‖x‖22 such that x solves min

x̂
‖Ax̂− b‖22.

In other words, application of the pseudoinverse A† to b selects from all least
squares solutions of the equation Ax = b the one with the smallest norm.

5. Truncated SVD and the L-curve method

Let now A ∈ Rm×n with pseudoinverse A† ∈ Rn×m, and assume that b ∈ Rm.
Denote moreover by

x† := A†b

the “true” solution of the equation Ax = b. In many practical applications, we have
the problem that the right hand side of this equation is subject to measurement
errors and that instead of the true data b we measure some noisy data

bδ = b+ nδ

for some noise nδ ∈ Rn of size ‖nδ‖ ≈ δ. If we use the pseudoinverse for solving
the noisy system Ax = bδ, we then obtain a noisy solution

xδ = A†bδ = A†(b+ nδ) = x† +A†nδ,

that is, the error we obtain is

xδ − x† = A†nδ.

Specifically, the worst case error is

max
‖nδ‖2≤δ

‖xδ − x†‖2 = max
‖nδ‖2≤δ

‖A†nδ‖ =
δ

σr
,

with σr being the smallest positive singular value of A. In case the matrix A has
small non-zero singular values, this means that the error in the solution might be
several orders of magnitude larger than the error in the data.

Additionally, the mapping b 7→ A†b will be very sensitive with respect to small
variations in b. That is, small changes in the measurements might lead to huge
changes in the supposed solution of the system.
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As a possible remedy, we may truncate the singular value decomposition of the
matrix A: Given ε > 0 we define

Aε :=
∑

k:σk≥ε

σkukv
T
k

and

A†ε =
∑

k:σk≥ε

σ−1k vku
T
k .

That is, we ignore all the singular values of A that are below the threshold ε. Using
this truncated matrix for solving the noisy system Ax = bδ, we obtain a regularised
solution

xδε := A†εb
δ.

In order to estimate the quality of this regularised solution, we note that the worst
case error is

max
‖nδ‖2≤δ

‖xδε − x†‖2 = max
‖nδ‖2≤δ

‖A†ε(b+ nδ)− x†‖2

≤ ‖A†εb− x†‖2 + max
‖nδ‖2≤δ

‖A†εb‖2

= ‖A†εb− x†‖2 + min
k:σk≥ε

δ

σk

≤ ‖A†εb− x†‖2 +
δ

ε
.

That is, the error in the solution splits into a regularised data error given by δ/ε
and a regularisation error given by ‖A†εb− x†‖2.

Now we note that we can write

x† =
∑
k

(x†, vk)vk =:
∑
k

x†kvk.

That is, x†k are the coefficients of x† with respect to the orthonormal basis v1,. . . ,vr
of RanA†. With this notation we have

x†ε := A†εb =
∑

k:σk≥ε

x†kvk

and therefore

‖A†εb− x†‖2 = ‖x†ε − x†‖2 =
( ∑
k:σk<ε

(x†k)2
)1/2

.

In other words, the regularisation error is exactly the norm of the coefficients of x†

(with respect to V ) corresponding to singular values smaller than ε.

Apart from the actual computation of the SVD of A, a major challenge in this
regularised inversion is the choice of the parameter ε. In the following we will
briefly discuss one heuristic method, which is called the L-curve method. As a first
step, we note that, instead of choosing the parameter ε, we may as well choose the
number of singular values that are used in the truncated SVD of A. That is, we
denote for k = 1, . . . , r

A†k :=

k∑
j=1

σ−1j vju
T
j

and

x
(k)
δ := A†kb

δ =

k∑
j=1

σ−1j 〈uj , b
δ〉vj .
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Then

‖x(k)δ ‖
2
2 =

k∑
j=1

σ−1j 〈uj , b
δ〉2,

which implies that the mapping

k 7→ ‖x(k)δ ‖2
is increasing in k. At the same time,

Ax
(k)
δ − b

δ =

n∑
j=k+1

〈uj , bδ〉uj ,

and therefore the mapping

k 7→ ‖Ax(k)δ − b
δ‖2

is decreasing. Now an often observed behaviour of these mappings is that for small k

the data fit ‖Ax(k)δ −bδ‖2 significantly improves with k for relatively small increases

of ‖x(k)δ ‖2. However, once the true solution x† is sufficiently well reconstructed,

further increases in k will mainly reconstruct the noise. Therefore the norm ‖x(k)δ ‖2
will increase significantly with a comparably small decrease of the residual ‖Ax(k)δ −
bδ‖2. The best reconstructions should therefore be obtained for parameters k for

which neither ‖x(k)δ ‖2 and ‖Ax(k)δ − bδ‖2 show large variations in k.
Now consider a log-log-plot of these two mappings, that is, plot the “curve”

given by the points (
log(‖x(k)δ ‖2), log(‖Ax(k)δ ‖2)

)
∈ R2

for k = 1, . . . , r. Following the considerations above, one would expect that these
points follow an L-shape, and the corner of the L marks those parameters k for
which the most plausible solutions can be expected to be obtained.

Example 8 (Discrete deconvolution). Let k : R → R be some bounded and in-
tegrable function. Given a function g : [0, 1] → R, we want to find a function
f : [0, 1]→ R such that k ∗ f = g, that is,∫ 1

0

f(y)k(x− y) dy = g(x)

for all x ∈ [0, 1].
We discretise this equation by using the midpoint rule (the choice of the quad-

rature rule does not fundamentally change the results) and obtain the system of
equations

1

n

n∑
j=1

k(xi − xj)fj = gi

with xj = (j − 1/2)/n, j = 1, . . . , n, and fj ≈ f(xj), gi := g(xi).

Consider in particular the case k(x) = e−x
2/2. That is, the function k is, up to

scaling, the standard Gaussian kernel of variance 1. In this case, it turns out that
already with n = 100, the resulting system of equations is sufficiently ill-posed as
to yield useless results even if the only error comes from rounding errors due to
computations with “only” double precision.

We assume in the following that the true solution is f†(x) = x2(1 − x2) and
that we are given exact (that is, exact up to machine precision) data g = k ∗ f†.
As can be seen in Figure 1, the unregularised solution of the equation k ∗ f = g is
essentially useless. However, using a truncated singular value decomposition, one
may obtain an almost perfect reconstruction of f†. In Figure 1 the reconstructions
f (k) using k = 8, k = 33, and k = 50 singular values are shown. For k = 8 and



10 MARKUS GRASMAIR

Figure 1. First row, left: true solution f†(x) = x2(1 − x2) for
0 ≤ x ≤ 1; First row, right: given noise-free data g = k ∗ f† with
k being a Gaussian kernel of variance 1; Second row, left: solution
of the discretised equation k ∗ f = g without any regularisation;
Second row, right: regularised solution using TSVD with 8 singular
values; Last row, left: regularised solution using TSVD with 33
singular values; Last row, right: regularised solution using TSVD
with 50 singular values. In the second and last row, the red curve
shows always the true solution f†, while the blue curve shows the
reconstruction f (k).

k = 33, the reconstructions capture the actual shape of f† reasonably well, and for
values of k between 9 and 32, the reconstructions become visually indistinguishable
from f†.

In the case of noisy data gδ = k ∗ f† + nδ the situtation is even worse, and it
is only possible to obtain reasonable reconstructions with a very small number of
singular values. As an example, consider the situation shown in Figure 2. Here,
using k = 9 singular values for the reconstruction provides a reasonable result, in
which the error is only slightly larger than the measurement error. For k = 15,
however, the solution is dominated by large oscillations and essentially useless.

In Figure 3, the L-curves both for the noise-free and the noisy case are shown.
The former predicts that the best reconstructions in the noise-free case can be found
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Figure 2. First row, left: true solution f†(x) = x2(1 − x2) for
0 ≤ x ≤ 1; First row, right: the blue curve shows the noise-free
data g = k∗f†, and the red curve shows noisy data gδ = g+nδ with
nδ being a realisation of an i.i.d. Gaussian random variable with
standard deviation δ = 0.002; Last row, left: regularised solution
from noisy data using TSVD with 9 singular values; Last row, right:
regularised solution from noisy data using TSVD with 15 singular
values. The red curve shows the true solution f†, while the blue

curve shows the reconstruction f
(k)
δ .

Figure 3. L-curves for the numerical examples depicted in Fig-
ures 1 and 2. The left figure shows the L-curve in the noise-free
case. Here the corner of the L is formed by the reconstructions
with 28–31 singular values. The left figure shows the L-curve in
the noisy case. Here the corner of the L is formed by the recon-
struction with 9 singular values.

with k ≈ 30, whereas the latter predicts good reconstructions for k ≈ 9. In both
cases, these predictions match reality surprisingly well.
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6. Regularisation

In the following, we will briefly discuss an alternative interpretation of the trun-
cated SVD, which allows for the definition of more general families of regularisation
methods.

We start by writing

A† = V



σ−11 0
. . .

. . .

σ−1r
0

. . .

0 0


UT .

Define now the function

f : R≥0 → R≥0, f(s) =

{
1/s if s > 0,

0 if s = 0,

and let

f(Σ) =


f(σ1) 0

. . .

. . .

f(σp)

 .

Then we can equivalently write

A† = V f(Σ)UT .

Moreover, setting

fε(s) :=

{
1/s if s ≥ ε,
0 if s < ε,

we obtain that

A†ε = V fε(Σ)UT .

That is, the approximation A†ε to the pseudoinverse of A can be obtained by ap-
proximating the function f (which essentially is the mapping s 7→ 1/s) by means
of the bounded function fε. Because of the boundedness of fε the approximation
is more stable than A† itself, but the increased stability comes at the cost of a
potential decrease in accuracy in case of a low noise level δ.

This interpretation of the truncated singular value decomposition allows us to
consider alternative regularisation methods by using different approximations of f .

Amongst the most important are:

• Lavrentiev regularisation defined by the function

gλ(s) :=

{
1

λ+s if s > 0,

0 if s = 0.

Instead of truncating the function 1/s, we shift it to the left and thus get
rid of the singularity at zero. This method is particularly interesting if
A ∈ Rn×n is a positive definite square matrix, in which case

V gλ(Σ)UT = (λ I +A)−1.
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That is, the regularised solution xλ of Ax = b can be found by solving the
system

(λ I +A)x = b.

• Tikhonov regularisation defined by the function

hα(s) :=
s

s2 + α
.

In this case,

V hα(Σ)UT = (α In×n +ATA)−1AT .

That is, the regularised solution xα can be found by solving the system

(α I +ATA)x = AT b.
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