EXAMINATION IN NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS USING DIFFERENCE METHODS

MONDAY, MAY 24, 2004
TIME 09:00-12:00
SUPERVISOR: BRYJULF OWREN

Exercisie 1. We consider the differential equation

$$
\begin{align*}
u_{t} & =u_{x x}, \quad 0 \leq x \leq 1, t \geq 0, \\
u(x, 0) & =f(x), \quad 0 \leq x \leq 1, \tag{1}\\
u(0, t) & =g_{0}(t), \quad u(1, t)=g_{1}(t), t \geq 0 .
\end{align*}
$$

We introduce a rectangular mesh with the points $\left(x_{m}, t_{n}\right)$ with $x_{m}=m h, 0 \leq m \leq M, h=$ $1 / M, t_{n}=n k, n=0,1, \ldots$. The quantity U_{m}^{n} approximates $u_{m}^{n}=u\left(x_{m}, t_{n}\right)$. We present a method of the type

$$
\begin{gather*}
U_{m}^{n+\frac{1}{2}}=U_{m}^{n}+\frac{r}{2}\left(\Delta_{x} U_{m}^{n}-\nabla_{x} U_{m}^{n+\frac{1}{2}}\right), \tag{2}\\
U_{m}^{n+1}=U_{m}^{n+\frac{1}{2}}+\frac{r}{2}\left(\Delta_{x} U_{m}^{n+1}-\nabla_{x} U_{m}^{n+\frac{1}{2}}\right), \tag{3}
\end{gather*}
$$

where $r=\frac{k}{h^{2}}$. Here $U_{m}^{n+\frac{1}{2}}$ is used as an approximation to $u\left(x_{m}, t_{n}+\frac{1}{2} k\right) . \Delta_{x}$ and ∇_{x} are respectively the forward- and backward-differences in the x-direction.
a) Describe how one explicit step is calculated from the schemes (2),(3). Use probably a stencil to make your explanation clearer.

It is possible to write the method above in the form

$$
\begin{equation*}
U_{m}^{n+1}=U_{m}^{n}+\frac{1}{4}\left(2 r+r^{2}\right) \delta_{x}^{2} U_{m}^{n+1}+\frac{1}{4}\left(2 r-r^{2}\right) \delta_{x}^{2} U_{m}^{n} \tag{4}
\end{equation*}
$$

b) Investigate von Neumann criterion for the stability of this method.
c) It turns out that if we let $h \rightarrow 0$ and $k \rightarrow 0$ in such a way that $c=k / h$ stays constant, then the numerical approximation U_{m}^{n} will converge to $\tilde{u}\left(x_{m}, t_{n}\right)$ for all $x_{m}=m h$ and $t_{n}=n k$. But the function $\tilde{u}\left(x_{m}, t_{n}\right)$ is not an exact solution to the differential equation (1). Explain why this happens, and find a differential equation which has $\tilde{u}\left(x_{m}, t_{n}\right)$ as exact solution.

Exercise 2. We consider the Laplace equation on the domain Ω shown in the figure.

$$
\Delta u=0, \quad(x, y) \in \Omega
$$

with boundary data

$$
\begin{array}{lll}
u(x, 0) & =0, & 0 \leq x \leq 0.75 \\
u(x, 1) & =0, & 0 \leq x \leq 0.5 \\
u(0, y) & =\sin \pi y, & 0 \leq y \leq 1 \\
u(0.5, y) & =\sin \pi y, & 0.5 \leq y \leq 1 \\
\frac{\partial u}{\partial n}\left(\frac{3-\lambda}{4}, \frac{\lambda}{2}\right) & =\lambda, & 0 \leq \lambda \leq 1
\end{array}
$$

where $\frac{\partial u}{\partial n}=\nabla u \cdot \vec{n}$. As the figure suggests, stepsize $h=0.25$ is used in both the x - and y-directions.

Find a consistent discretization at the boundary node marked 1, and set up a linear system of equations for all the 5 unknowns in the figure.

