EXAMINATION IN NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS USING DIFFERENCE METHODS

MONDAY, JUNE 10, 2005 TIME 09:00-12:00 SUPERVISOR: SYVERT NRSETT

Exercisie 1. We consider the problem

$$\frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} \tag{1}$$

in the domain $x \in [0, 1]$ and $t \ge 0$. We also have that

 $u(1,t) = \phi_0(t)$ and u(x,0) = g(t),

and we assume that (1) is well-posed. Set $\Delta x = \frac{1}{m+1}$ with $m \ge 0$. We solve this differential equation using the θ -method with $\Delta t > 0$. Let the numerical values at (x_l, t_n) be U_l^n . The θ -method can be written as

$$U_l^{n+1} = U_l^n + \theta \mu (U_{l-1}^n - 2U_l^n + U_{l+1}^n) + (1 - \theta) \mu (U_{l-1}^{n+1} - 2U_l^{n+1} + U_{l+1}^{n+1})$$
(2)

with Courant number $\mu = \frac{\Delta t}{(\Delta x)^2}$ and $0 \le \theta \le 1$.

a) Let

$$U^{n} = [U_{1}^{n}, \dots, U_{m}^{n}]^{T}.$$

Find $M \in \mathbf{R}^{m \times m}$, $A \in \mathbf{R}^{m \times m}$ and $F \in \mathbf{R}^{m}$ such that
 $MU^{n+1} = AU^{n} + F$ (3)

where F comes from the boundary contributions.

b) Show that M in (3) is regular.

c) Let
$$u_l^n = u(x_l, t_n)$$
. The truncation error T_l^{n+1} of the θ -method is defined as
 $T_l^{n+1} = u_l^{n+1} - u_l^n - (1-\theta)\mu(u_{l-1}^{n+1} - 2u_l^{n+1} + u_{l+1}^{n+1}) - \theta\mu(u_{l-1}^n - 2u_l^n + u_{l+1}^n).$
Show that
 $|T_l^{n+1}| \le C(\Delta x)^4$

where C is a constant and μ is constant. You can assume that exact solution u(x,t) is at least four times differentiable in space and at least two times differentiable in time. *Hint 1:* $u(x_{l-1},t_n) - 2u(x_l,t_n) + u(x_{l+1},t_n) = (\Delta x)^2 u_{xx}(x_l,t_{n+1}) + \mathcal{O}(\Delta x)^4$. *Hint 2:* Use $\Delta t = \mu(\Delta x)^2$, when deciding which term to drop out of the expression.

d) Show that the θ -method is convergent without using Lax's equivalence theorem. *Hint 1:* Remember to generalize $\mu \leq 1/2$ in the Euler case to the θ -method. *Hint 2:* Define e_l^n as the error at the point (x_l, t_n) and

$$\eta^n = \max_l |e_l^n|.$$