EXAMINATION IN NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS USING DIFFERENCE METHODS

MONDAY, JUNE 10, 2005

TIME 09:00-12:00
SUPERVISOR: SYVERT NRSETT

Exercisie 1. We consider the problem

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial^{2} u(x, t)}{\partial x^{2}} \tag{1}
\end{equation*}
$$

in the domain $x \in[0,1]$ and $t \geq 0$. We also have that

$$
u(1, t)=\phi_{0}(t) \text { and } u(x, 0)=g(t)
$$

and we assume that (1) is well-posed. Set $\Delta x=\frac{1}{m+1}$ with $m \geq 0$. We solve this differential equation using the θ-method with $\Delta t>0$. Let the numerical values at $\left(x_{l}, t_{n}\right)$ be U_{l}^{n}. The $\theta-$ method can be written as

$$
\begin{equation*}
U_{l}^{n+1}=U_{l}^{n}+\theta \mu\left(U_{l-1}^{n}-2 U_{l}^{n}+U_{l+1}^{n}\right)+(1-\theta) \mu\left(U_{l-1}^{n+1}-2 U_{l}^{n+1}+U_{l+1}^{n+1}\right) \tag{2}
\end{equation*}
$$

with Courant number $\mu=\frac{\Delta t}{(\Delta x)^{2}}$ and $0 \leq \theta \leq 1$.
a) Let

$$
U^{n}=\left[U_{1}^{n}, \ldots, U_{m}^{n}\right]^{T}
$$

Find $M \in \mathbf{R}^{m \times m}, A \in \mathbf{R}^{m \times m}$ and $F \in \mathbf{R}^{m}$ such that

$$
\begin{equation*}
M U^{n+1}=A U^{n}+F \tag{3}
\end{equation*}
$$

where F comes from the boundary contributions.
b) Show that M in (3) is regular.
c) Let $u_{l}^{n}=u\left(x_{l}, t_{n}\right)$. The truncation error T_{l}^{n+1} of the θ-method is defined as $T_{l}^{n+1}=u_{l}^{n+1}-u_{l}^{n}-(1-\theta) \mu\left(u_{l-1}^{n+1}-2 u_{l}^{n+1}+u_{l+1}^{n+1}\right)-\theta \mu\left(u_{l-1}^{n}-2 u_{l}^{n}+u_{l+1}^{n}\right)$.
Show that

$$
\left|T_{l}^{n+1}\right| \leq C(\Delta x)^{4}
$$

where C is a constant and μ is constant. You can assume that exact solution $u(x, t)$ is at least four times differentiable in space and at least two times differentiable in time.
Hint 1: $u\left(x_{l-1}, t_{n}\right)-2 u\left(x_{l}, t_{n}\right)+u\left(x_{l+1}, t_{n}\right)=(\Delta x)^{2} u_{x x}\left(x_{l}, t_{n+1}\right)+\mathcal{O}(\Delta x)^{4}$.
Hint 2: Use $\Delta t=\mu(\Delta x)^{2}$, when deciding which term to drop out of the expression.
d) Show that the θ-method is convergent without using Lax's equivalence theorem.

Hint 1: Remember to generalize $\mu \leq 1 / 2$ in the Euler case to the θ-method.
Hint 2: Define e_{l}^{n} as the error at the point $\left(x_{l}, t_{n}\right)$ and

$$
\eta^{n}=\max _{l}\left|e_{l}^{n}\right|
$$

