EXAMINATION IN NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS USING DIFFERENCE METHODS

MONDAY, JUNE 9, 2006
TIME 09:00-13:00
SUPERVISOR: BÅRD SKAFLESTAD

Exercisie 1. In this exercise we condsider the advection-diffusion equation formulated as an initial-boundary value problem

$$
\begin{array}{r}
u_{t}+a u_{x}=\nu u_{x x}, \quad t>0, \quad 0<x<1, \\
u(x, 0)=f(x), \quad 0<x<1, \tag{1}\\
u(0, t)=g_{0}(t), u(1, t)=g_{1}(t), t \geq 0 .
\end{array}
$$

a) We introduce a mesh with nodes $\left(x_{m}, t_{n}\right)$ where $x_{m}=m h, 0 \leq m \leq M$ and $t_{n}=$ $n k, 0 \leq n \leq N$ with stepsizes given as $h=1 / M$ and $k=T / N$. Let $r=k / h^{2}$ and $q=a k / h$. We denote by U_{m}^{n} an approximation to $u_{m}^{n}=u\left(x_{m}, t_{n}\right)$, and propose the following scheme for (1)

$$
\begin{equation*}
U_{m}^{n+1}=\left(\nu r+\frac{\alpha+1}{2} q\right) U_{m-1}^{n}+(1-2 \nu r-\alpha q) U_{m}^{n}+\left(\nu r+\frac{\alpha-1}{2} q\right) U_{m+1}^{n}, \tag{2}
\end{equation*}
$$

where α is a parameter we can choose. Find an expression for leading term in the truncation error in terms of α, and comment on the value of α that gives a better order of convergence.
b) Assume that we choose $\alpha=0$ in (2), but replace the diffusion coefficient ν in (1) by $\bar{\nu}=\nu+\frac{1}{2} \alpha a h$. Write down the resulting difference formula, and comment on the result.
c) Put $\alpha=0$ in (2) and investigate the stability of the method on the time interval $[0, T]$ via the matrix method.
Hint. The matrix A to be investigated is diagonalizable such that $A=T \Lambda T^{-1}$ with

$$
\|T\|_{2} \cdot\left\|T^{-1}\right\|_{2} \leq e^{\frac{|a|}{2 \nu}}, \quad \text { for all } h, k
$$

Exercise 2. A function $u(x, y)$ satisfies the elliptic differential equation

$$
u_{x x}+3 u_{y y}=-16
$$

on the square bounded by the lines $x= \pm 1$ and $y= \pm 1$. The boundary conditions are $u=0$ for $x=1$ and $\frac{\partial u}{\partial y}=-1$ for $y=1$. Moreover $u(x, y)$ is symmetric about both the x-axis and the y-axis. We use a 5 -point difference formula, and a uniform mesh with stepsizes $\Delta x=\Delta y=\frac{1}{4}$.
a) Show that the solution to this problem can be approximated by solving a system of equations of the form $A U=b$ where A is a 20×20-matrix of the form

$$
A=\left[\begin{array}{ccccc}
B & 6 I & & & \\
3 I & B & 3 I & & \\
& 3 I & B & 3 I & \\
& & 3 I & B & 3 I \\
& & & 6 I & B
\end{array}\right]
$$

b) Find the matrix B.

Exercise 3. We consider the hyperbolic equation

$$
\begin{equation*}
u_{t}+2 t u_{x}=0 . \tag{3}
\end{equation*}
$$

a) Show that the characteristic through the point $(X, T), T>0$ is given by the equation

$$
t=\sqrt{x-X+T^{2}}, \quad t>0
$$

b) Hence determine the CFL-condition for an explicit scheme of the type

$$
U_{m}^{n+1}=a_{-1} U_{m-1}^{n}+a_{0} U_{m}^{n}+a_{1} U_{m+1}^{n}
$$

applied to (3).
c) Investigate the dissipative properties of the scheme

$$
U_{m}^{n+1}=\frac{1}{2}\left(U_{m+1}^{n}+U_{m-1}^{n}\right)-\frac{a k}{2 h}\left(U_{m+1}^{n}-U_{m-1}^{n}\right)
$$

for the equation $u_{t}+a u_{x}=0$.

