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Exercisie 1. Given the initial-boundary value problem

up = 0Oz(a(r)dzu), 0<z<1,t>0,
u(z,0) = f(z), 0<z<l1,
u(0,t) = wu(l,t)=0, t>0,

where a(z) is continuous and positive in the interval [0, 1].

a) Discretize this equation using centered differences in space, replacing 0, with (1/h)d,

and using Eulers method in time. Define the vector U™

[y, ..

UM h=1/(M +

1), and show that that the difference method satisfies a recurrence relation of the type

Uttt = cur,

Determine the matrix C.

C e RM*M,

b) Let r = k/h? where k is the time step, a = Jmax a(x). Show that the method is stable

for stepsizes satisfying
2ar <

Hint. Gershgorin’s theorem.

1.

Exercise 2. In this exercise we study different aspects of the finite element method applied
to the Poisson problem with homogeneous boundary conditions

—Au = f (m,y) € Qv

Assume that € can be partitioned into a uni-
form triangulation where each edge has length h.
A description of the triangulation is given in the
figure (on the right), where we assume qo, . .., gs
are interior nodes. The 6 traingles T); are marked
on the figure by the corresponding indices j. We
introduce a finite element space S, C S as a sub-
space of .S consisting of functions that are linear
on each triangle. The basis for S; are pyramid
functions {¢p(z,y) : p interior node in Q}. For
the outline of the figure, we define a local coor-
dinate system by setting

T —Tp

=2,

u=0 (z,y) € 0.

(1)

q2
q1
2 0
q3 p )
3 5
qa
g5
Y—Yp

n:Tv



2 MONDAY, JUNE 4, 2007 TIME 09:00-13:00 SUPERVISOR: BRYNJULF OWREN

so that the edges joining p to the vertices (+1,0) and (:t%, i?) of the hexagon are normal-
ized. We define the vector z = (£, 7).

a) Shape functions 1/1{;, Jj=0,...,5, are basis functions ¢, restricted to triangles T} (see
figure). Derive the expressions for ¢g (z), wgo (z) and 1/121(z).
b) Derive a 2 x 2—matrix @ such that
vyt (z) = ) (Qz)
G 2) = v (Q2)
A o
éj-%l (Z) - 1#}37 (QZ)7
where, by definition, we set ¢5(z) := ¢ (z) and Whs = 1l Determine @ and verify
that it is orthogonal (Q7Q = I) with determinant 1.
c) Hence, verify that

[ Ivegpazan = [ 1vuten

T; To

/ V), - V) dédn = Vi - Vol dédn
T; To

| v dein = [ vug-vugacan
J 0

for 0 < j <5, and evaluate each of the three integrals.
d) The variational formulation of (1) gives a bilinear form a(u,v), u,v € S. Evaluate
a(¢p, ¢p) and a(gy, ¢q;), where ¢, ¢q,; are pyramid functions centered at p and g;.

Exercise 3. Consider the hyperbolic problem
Uy + au, = bu.

Lax-Wendroff’s scheme for this equation is

1 2
Ut = (L4 b LR — P bk (U — Uh) + P20,

where p = k/h and k and h are stepsizes in time and space.
a) Show how this scheme can be derived, using for example that 0?u = a?0%u — 2ab0,u +
b2u.
b) Derive an expression for the local truncation error 77, taking into account the possi-
bilities of having a = 0 or b = 0. You should at least have an expression of the form

n __

= O(...), for the leading terms.

m
c) Put ¢ = bk, r = ap. Show that the above scheme is von Neumann stable for all ¢, r
such that

(I1+C+ C2/2)2 —+ 4q7‘2(§ + C2/2) + 47°2<]2(7‘2 -1+ C)Z) <1, forall0<g<1.

Hint. The parameter ¢ emerges as ¢ = sin® % with usual notation for von Neumann
stability.
d) Show that the neccessary conditions for von Neumann stability is

1 1
—2<¢<0, r2§1+§C+ZC2.



