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Exercisie 1. Given the initial-boundary value problem

ut = ∂x(a(x)∂xu), 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

u(0, t) = u(1, t) = 0, t ≥ 0,

where a(x) is continuous and positive in the interval [0, 1].

a) Discretize this equation using centered differences in space, replacing ∂x with (1/h)δx,
and using Eulers method in time. Define the vector Un = [Un

1 , . . . , U
n
M ]T , h = 1/(M +

1), and show that that the difference method satisfies a recurrence relation of the type

Un+1 = CUn, C ∈ RM×M .

Determine the matrix C.
b) Let r = k/h2 where k is the time step, α = max

0≤x≤1
a(x). Show that the method is stable

for stepsizes satisfying

2αr ≤ 1.

Hint. Gershgorin’s theorem.

Exercise 2. In this exercise we study different aspects of the finite element method applied
to the Poisson problem with homogeneous boundary conditions

−∆u = f (x, y) ∈ Ω, u = 0 (x, y) ∈ ∂Ω. (1)

Assume that Ω can be partitioned into a uni-
form triangulation where each edge has length h.
A description of the triangulation is given in the
figure (on the right), where we assume q0, . . . , q5
are interior nodes. The 6 traingles Tj are marked
on the figure by the corresponding indices j. We
introduce a finite element space Sh ⊆ S as a sub-
space of S consisting of functions that are linear
on each triangle. The basis for Sh are pyramid
functions {φp(x, y) : p interior node in Ω}. For
the outline of the figure, we define a local coor-
dinate system by setting
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so that the edges joining p to the vertices (±1, 0) and (±1
2
,±

√
3

2
) of the hexagon are normal-

ized. We define the vector z = (ξ, η).

a) Shape functions ψj
p, j = 0, . . . , 5, are basis functions φp restricted to triangles Tj (see

figure). Derive the expressions for ψ0
p(z), ψ

0
q0

(z) and ψ0
q1

(z).
b) Derive a 2 × 2−matrix Q such that

ψj+1
p (z) = ψj

p(Qz)

ψj+1
qj+1

(z) = ψj
qj

(Qz)

ψj
qj+1

(z) = ψj−1
qj

(Qz),

where, by definition, we set ψ6
p(z) := ψ0

p(z) and ψj
q6

:= ψj
q0
. Determine Q and verify

that it is orthogonal (QTQ = I) with determinant 1.
c) Hence, verify that ∫

Tj

|∇ψj
p|

2dξdη =

∫
T0

|∇ψ0
p|

2dξdη

∫
Tj

∇ψj
p · ∇ψ

j
qj
dξdη =

∫
T0

∇ψ0
p · ∇ψ0

q0
dξdη

∫
Tj

∇ψj
p · ∇ψ

j
qj+1

dξdη =

∫
T0

∇ψ0
p · ∇ψ0

q1
dξdη

for 0 ≤ j ≤ 5, and evaluate each of the three integrals.
d) The variational formulation of (1) gives a bilinear form a(u, v), u, v ∈ S. Evaluate

a(φp, φp) and a(φp, φqj
), where φp, φqj

are pyramid functions centered at p and qj .

Exercise 3. Consider the hyperbolic problem

ut + aux = bu.

Lax-Wendroff’s scheme for this equation is

Um+1
m = (1 + bk +

1

2
(bk)2)Un

m −
ap

2
(1 + bk)(Um+1 − Un

m−1) +
(ap)2

2
δ2xU

n
m

where p = k/h and k and h are stepsizes in time and space.

a) Show how this scheme can be derived, using for example that ∂2
t u = a2∂2

xu− 2ab∂xu+
b2u.

b) Derive an expression for the local truncation error τn
m, taking into account the possi-

bilities of having a = 0 or b = 0. You should at least have an expression of the form
τn
m = O(. . .), for the leading terms.

c) Put ζ = bk, r = ap. Show that the above scheme is von Neumann stable for all ζ, r
such that

(1 + ζ + ζ2/2)2 + 4qr2(ζ + ζ2/2) + 4r2q2(r2 − (1 + ζ)2) ≤ 1, for all 0 ≤ q ≤ 1.

Hint. The parameter q emerges as q = sin2 βh
2

with usual notation for von Neumann
stability.

d) Show that the neccessary conditions for von Neumann stability is

−2 ≤ ζ ≤ 0, r2 ≤ 1 +
1

2
ζ +

1

4
ζ2.


