EXAMINATION IN NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS USING DIFFERENCE METHODS

MONDAY, JUNE 4, 2007
TIME 09:00-13:00
SUPERVISOR: BRYNJULF OWREN

Exercisie 1. Given the initial-boundary value problem

$$
\begin{aligned}
u_{t} & =\partial_{x}\left(a(x) \partial_{x} u\right), \quad 0<x<1, t>0 \\
u(x, 0) & =f(x), \quad 0<x<1 \\
u(0, t) & =u(1, t)=0, \quad t \geq 0
\end{aligned}
$$

where $a(x)$ is continuous and positive in the interval $[0,1]$.
a) Discretize this equation using centered differences in space, replacing ∂_{x} with $(1 / h) \delta_{x}$, and using Eulers method in time. Define the vector $U^{n}=\left[U_{1}^{n}, \ldots, U_{M}^{n}\right]^{T}, h=1 /(M+$ $1)$, and show that that the difference method satisfies a recurrence relation of the type

$$
U^{n+1}=C U^{n}, \quad C \in \mathbf{R}^{M \times M}
$$

Determine the matrix C.
b) Let $r=k / h^{2}$ where k is the time step, $\alpha=\max _{0 \leq x \leq 1} a(x)$. Show that the method is stable for stepsizes satisfying

$$
2 \alpha r \leq 1
$$

Hint. Gershgorin's theorem.
Exercise 2. In this exercise we study different aspects of the finite element method applied to the Poisson problem with homogeneous boundary conditions

$$
\begin{equation*}
-\Delta u=f(x, y) \in \Omega, \quad u=0(x, y) \in \partial \Omega \tag{1}
\end{equation*}
$$

Assume that Ω can be partitioned into a uniform triangulation where each edge has length h. A description of the triangulation is given in the figure (on the right), where we assume q_{0}, \ldots, q_{5} are interior nodes. The 6 traingles T_{j} are marked on the figure by the corresponding indices j. We introduce a finite element space $S_{h} \subseteq S$ as a subspace of S consisting of functions that are linear on each triangle. The basis for S_{h} are pyramid functions $\left\{\phi_{p}(x, y): p\right.$ interior node in $\left.\Omega\right\}$. For the outline of the figure, we define a local coordinate system by setting

$$
\xi=\frac{x-x_{p}}{h}, \quad \eta=\frac{y-y_{p}}{h}
$$

so that the edges joining p to the vertices $(\pm 1,0)$ and $\left(\pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ of the hexagon are normalized. We define the vector $\mathbf{z}=(\xi, \eta)$.
a) Shape functions $\psi_{p}^{j}, j=0, \ldots, 5$, are basis functions ϕ_{p} restricted to triangles T_{j} (see figure). Derive the expressions for $\psi_{p}^{0}(\mathbf{z}), \psi_{q_{0}}^{0}(\mathbf{z})$ and $\psi_{q_{1}}^{0}(\mathbf{z})$.
b) Derive a $2 \times 2-$ matrix Q such that

$$
\begin{aligned}
\psi_{p}^{j+1}(\mathbf{z}) & =\psi_{p}^{j}(Q \mathbf{z}) \\
\psi_{q_{+1}}^{j+1}(\mathbf{z}) & =\psi_{q_{j}}^{j}(Q \mathbf{z}) \\
\psi_{q_{j+1}}^{j}(\mathbf{z}) & =\psi_{q_{j}}^{j-1}(Q \mathbf{z}),
\end{aligned}
$$

where, by definition, we set $\psi_{p}^{6}(\mathbf{z}):=\psi_{p}^{0}(\mathbf{z})$ and $\psi_{q_{6}}^{j}:=\psi_{q_{0}}^{j}$. Determine Q and verify that it is orthogonal $\left(Q^{T} Q=I\right)$ with determinant 1 .
c) Hence, verify that

$$
\begin{aligned}
\int_{T_{j}}\left|\nabla \psi_{p}^{j}\right|^{2} d \xi d \eta & =\int_{T_{0}}\left|\nabla \psi_{p}^{0}\right|^{2} d \xi d \eta \\
\int_{T_{j}} \nabla \psi_{p}^{j} \cdot \nabla \psi_{q_{j}}^{j} d \xi d \eta & =\int_{T_{0}} \nabla \psi_{p}^{0} \cdot \nabla \psi_{q_{0}}^{0} d \xi d \eta \\
\int_{T_{j}} \nabla \psi_{p}^{j} \cdot \nabla \psi_{q_{j+1}}^{j} d \xi d \eta & =\int_{T_{0}} \nabla \psi_{p}^{0} \cdot \nabla \psi_{q_{1}}^{0} d \xi d \eta
\end{aligned}
$$

for $0 \leq j \leq 5$, and evaluate each of the three integrals.
d) The variational formulation of (1) gives a bilinear form $a(u, v), u, v \in S$. Evaluate $a\left(\phi_{p}, \phi_{p}\right)$ and $a\left(\phi_{p}, \phi_{q_{j}}\right)$, where $\phi_{p}, \phi_{q_{j}}$ are pyramid functions centered at p and q_{j}.
Exercise 3. Consider the hyperbolic problem

$$
u_{t}+a u_{x}=b u .
$$

Lax-Wendroff's scheme for this equation is

$$
U_{m}^{m+1}=\left(1+b k+\frac{1}{2}(b k)^{2}\right) U_{m}^{n}-\frac{a p}{2}(1+b k)\left(U_{m+1}-U_{m-1}^{n}\right)+\frac{(a p)^{2}}{2} \delta_{x}^{2} U_{m}^{n}
$$

where $p=k / h$ and k and h are stepsizes in time and space.
a) Show how this scheme can be derived, using for example that $\partial_{t}^{2} u=a^{2} \partial_{x}^{2} u-2 a b \partial_{x} u+$ $b^{2} u$.
b) Derive an expression for the local truncation error τ_{m}^{n}, taking into account the possibilities of having $a=0$ or $b=0$. You should at least have an expression of the form $\tau_{m}^{n}=\mathcal{O}(\ldots)$, for the leading terms.
c) Put $\zeta=b k, r=a p$. Show that the above scheme is von Neumann stable for all ζ, r such that
$\left(1+\zeta+\zeta^{2} / 2\right)^{2}+4 q r^{2}\left(\zeta+\zeta^{2} / 2\right)+4 r^{2} q^{2}\left(r^{2}-(1+\zeta)^{2}\right) \leq 1, \quad$ for all $0 \leq q \leq 1$.
Hint. The parameter q emerges as $q=\sin ^{2} \frac{\beta h}{2}$ with usual notation for von Neumann stability.
d) Show that the neccessary conditions for von Neumann stability is

$$
-2 \leq \zeta \leq 0, \quad r^{2} \leq 1+\frac{1}{2} \zeta+\frac{1}{4} \zeta^{2}
$$

