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EXAM IN TMA4212
25. may 2009

Time: 09:00–13:00

Allowed material: code B – All printed and handwritten material is allowed.
A simple calculator is allowed.

Problem 1

a) Consider the boundary value problem

−εuxx + au = 0 (1)
u(0) = 0, (2)
u(1) = 1, (3)

ε > 0, a > 0 and 0 < x < 1. Consider a mesh x0, . . . , xM with xm =
mh and h = 1/M , and denote with um the numerical approximation of
u(xm). Discretize this problem with central differences, the linear system
of algebraic equations you obtain is

AhU = b, (4)

with

Ah = a I − ε

h2
tridiag(1,−2,+1), U = (u1, . . . , uM−1)T , b ∈ RM−1.

Find b.1

Consider the local truncation error τ := Ahu− b where

u := (u(x1), . . . , u(xM−1))T ,

is the exact solution of (1) tabulated at the nodes of the discretization
mesh. The solution u of the boundary value problem is smooth bounded

1Here I is the identity matrix and tridiag(α, β, γ) is the tridiagonal matrix with β on the
main diagonal, α on the sub-diagonal and γ on the super-diagonal.
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and with bounded derivatives on [0, 1]. Using Taylor expansion show that
the j-th component of the local truncation error is

τj = − ε

12
h2uxxxx(xj)−O(h4).

b) Consider now the error Eh := U − u, and show that the method is con-
vergent.

c) Show that

uj = (τ2M − τ1M )−1(τ2j − τ1j), j = 1, . . . ,M − 1,

with
τ1 = 1 + σ −

√
σ(2 + σ), τ2 = 1 + σ +

√
σ(2 + σ),

where σ = ah2/(2ε).

d) Consider a finite element discretization of (1) using piecewise-linear finite
elements on the mesh x0, . . . , xM = 1 with xm = mh and h = 1/M . Use
the bilinear form

a(u, v) = ε

∫ 1

0
uxvx dx+ a

∫ 1

0
uv dx,

to write the Galerkin formulation of the problem using appropriate func-
tion spaces2, assume u ∈ H1

E and v ∈ H1
0 . Explain the connection between

the Galerkin formulation and (1).

Write now the Galerkin method and the corresponding linear system of
equations

(C +B)U = b,

where C is the stiffness matrix and B is the mass matrix. Recall that the
mass matrix B is the (M − 1)× (M − 1) matrix with entries

Bi,j :=
∫ 1

0
ϕiϕj dx, i, j = 1, . . . ,M − 1,

and ϕ1, . . . , ϕM−1 are the finite element basis functions. Use exact inte-
gration to find the entries of C and B.

e) By choosing appropriate quadrature modify the mass matrix B into a new
matrix B̂ so that the resulting method gives the same numerical solution
obtained from (4).

2

H1((0, 1)) := {v ∈ L2((0, 1)) | v absolutely continuous on [0, 1], ∂xv ∈ L2((0, 1)) },
H1

0 ((0, 1)) := {v ∈ H1((0, 1)) | v(0) = v(1) = 0 },
H1

E((0, 1)) := {v ∈ H1((0, 1)) | v(0) = 0, v(1) = 1 }.



TMA4212 Numerical PDE Page 3 of 6

Problem 2

a) Consider the linearized Korteweg-deVries equation (KdV), as a pure ini-
tial value problem

ut + ρux + uxxx = 0, u(−∞) = u(∞) = 0, x ∈ R,

ρ a given real constant.

Consider the interval [−L,L] with L > 0 sufficiently large, consider the
grid xm = −L + hm, h = 2L/M , m = 0, . . . ,M . Discretize the problem
with central finite differences in space and with the trapezoidal rule in
time (the Crank-Nicolson method), let u(x0, t) = u(xM , t) = 0.

Use the following central differences approximation of the third derivative

uxxx|xm
=
u(xm+3)− 3u(xm+1) + 3u(xm−1)− u(xm−3)

8h3
+O(h2).

Show that the obtained method is Von Neumann stable.

b) Consider the energy function

H(u(t)) =
1
2

∫ ∞
−∞

ux
2 dx− ρ

2

∫ ∞
−∞

u2 dx.

Assume u and all its derivatives with respect to x vanish for |x| → ∞.
Using integration by parts, show that H is constant along solutions of the
linearized KdV equation (i.e. dH(u(t))

dt = 0).

c) Assume now that D is the skew-symmetric matrix corresponding to the
central finite difference discretization of the first derivative3. It is easy to
verify that the matrix A corresponding to the central difference discretiza-
tion of the third derivative is such that A = D3. Write the Crank-Nicolson
method in the form Un+1 = CUn for an appropriate matrix C and with
Un = (un

1 , . . . , u
n
M−1)T the numerical solution. Show that the discrete

energy function

H ≈ H̃(U) :=
1
2
‖DU‖22 −

ρ

2
‖U‖22, U ∈ RM−1

is constant along numerical solutions given by the Crank-Nicolson method,
that is H̃(Un+1) = H̃(Un). Here ‖ · ‖2 is the grid-function-norm and is
an approximation of the integrals defining H.

3Skew-symmetric matrices are diagonalizable with pure imaginary eigenvalues and a set
of orthonormal eigenvectors: D = V ΛV H with λ a diagonal matrix with diagonal elements
λm = iαm, m = 1, . . . ,M − 1, with i =

√
−1, αm real, and V HV = I. V H is the conjugate-

transpose of V .
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Problem 3

a) Consider the partial differential equation

ut = uxx − γu, 0 < x < 1, t ∈ [0, T ], γ > 0,

with Neumann boundary conditions

−∂xu|x=0 = 0, ∂xu|x=1 = 1.

We discretize in space using the method of line discretizations. We use
a second order discretization of the boundary conditions, and a central
difference discretization of the second derivative with respect to x, and
we obtain a linear system of ordinary differential equations of the type

U̇ = AU + g, (5)

where U(t) := (u0(t), . . . , uM (t))T and um(t) ≈ u(xm, t), m = 0, . . . ,M .

Find A and g.

b) We take the exact solution of the linear system of ordinary differential
equations (5) as numerical approximation of the solution of partial differ-
ential equation, that is

(un
0 , . . . , u

n
M )T := (u0(tn), . . . , uM (tn))T , Un := U(tn), (6)

and un
m ≈ u(xm, t

n).

Consider the exact solution tabulated at the nodes of the discretization
and at time t, u(t) = (u(x0, t), . . . , u(xM , t))T , the local truncation error
is

τ := u̇−Au− g,

and you may use that ‖τ‖2 = Ch2 +O(h4).

Prove convergence of the finite difference scheme.

Extra information

Assume g is a constant vector, A is invertible and I is the identity matrix4.
One can solve (5) exactly by the variation of constants formula to obtain

U(t) = exp((t− t0)A)U(t0) + f(t− t0, A) g, (7)

with

f(t− t0, A) = A−1(exp((t− t0)A)− I), exp(sA) :=
∞∑

k=0

sk

k!
Ak.

4The assumptions g constant and A invertible are not essential to apply the variation of
constants formula, but are useful to simplify the formulae.
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Here exp(sA) is the matrix exponential and if A is diagonalizable, also
exp(sA) is diagonalizable,

A = XΛX−1 ⇒ exp(sA) = X exp(sΛ)X−1.

You can use (7) to write the numerical approximation Un of (6) and to
obtain Un+1 = CUn + q, with appropriate C and q.
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Piecewise-linear finite element functions

φj(x) =


(x−xj−1)

h xj−1 ≤ x ≤ xj ,

(xj+1−x)
h xj ≤ x ≤ xj+1,

0 otherwise,

j = 1, . . . ,M − 1,

φM (x) =

{
(x−xM−1)

h xM−1 ≤ x ≤ xM ,

0 otherwise,
φ0(x) =

{
(x0−x)

h x0 ≤ x ≤ x1,

0 otherwise.

Eigenvalues of the discrete Laplacian

Consider the (M − 1)× (M − 1) matrix Bh = 1/h2 tridiag(1,−2, 1), discretiza-
tion of the Laplacian (with homogeneous Dirichlet boundary conditions). The
eigenvalues of Bh are

λp(Bh) = 2/h2 (cos(pπh)− 1), p = 1, . . . ,M − 1.


