Contact during the exam:
Bawfeh K. Kometa, tlf. 73591972

EXAM IN TMA4212

25. may 2009

Time: 09:00-13:00

Allowed material: code B - All printed and handwritten material is allowed. A simple calculator is allowed.

Problem 1

a) Consider the boundary value problem

$$
\begin{gather*}
-\varepsilon u_{x x}+a u=0 \tag{1}\\
u(0)=0, \tag{2}\\
u(1)=1, \tag{3}
\end{gather*}
$$

$\varepsilon>0, a>0$ and $0<x<1$. Consider a mesh x_{0}, \ldots, x_{M} with $x_{m}=$ $m h$ and $h=1 / M$, and denote with u_{m} the numerical approximation of $u\left(x_{m}\right)$. Discretize this problem with central differences, the linear system of algebraic equations you obtain is

$$
\begin{equation*}
A^{h} U=\mathbf{b}, \tag{4}
\end{equation*}
$$

with

$$
A^{h}=a I-\frac{\varepsilon}{h^{2}} \operatorname{tridiag}(1,-2,+1), \quad U=\left(u_{1}, \ldots, u_{M-1}\right)^{T}, \quad \mathbf{b} \in \mathbf{R}^{M-1} .
$$

Find \mathbf{b}. ${ }^{1}$
Consider the local truncation error $\tau:=A^{h} \mathbf{u}-\mathbf{b}$ where

$$
\mathbf{u}:=\left(u\left(x_{1}\right), \ldots, u\left(x_{M-1}\right)\right)^{T},
$$

is the exact solution of (1) tabulated at the nodes of the discretization mesh. The solution u of the boundary value problem is smooth bounded

[^0]and with bounded derivatives on $[0,1]$. Using Taylor expansion show that the j-th component of the local truncation error is
$$
\tau_{j}=-\frac{\varepsilon}{12} h^{2} u_{x x x x}\left(x_{j}\right)-\mathcal{O}\left(h^{4}\right) .
$$
b) Consider now the error $E^{h}:=U-\mathbf{u}$, and show that the method is convergent.
c) Show that
$$
u_{j}=\left(\tau_{2}{ }^{M}-\tau_{1}{ }^{M}\right)^{-1}\left(\tau_{2}^{j}-\tau_{1}^{j}\right), \quad j=1, \ldots, M-1,
$$
with
$$
\tau_{1}=1+\sigma-\sqrt{\sigma(2+\sigma)}, \quad \tau_{2}=1+\sigma+\sqrt{\sigma(2+\sigma)},
$$
where $\sigma=a h^{2} /(2 \varepsilon)$.
d) Consider a finite element discretization of (1) using piecewise-linear finite elements on the mesh $x_{0}, \ldots, x_{M}=1$ with $x_{m}=m h$ and $h=1 / M$. Use the bilinear form
$$
a(u, v)=\varepsilon \int_{0}^{1} u_{x} v_{x} d x+a \int_{0}^{1} u v d x
$$
to write the Galerkin formulation of the problem using appropriate function spaces ${ }^{2}$, assume $u \in H_{E}^{1}$ and $v \in H_{0}^{1}$. Explain the connection between the Galerkin formulation and (1).
Write now the Galerkin method and the corresponding linear system of equations
$$
(C+B) U=b
$$
where C is the stiffness matrix and B is the mass matrix. Recall that the mass matrix B is the $(M-1) \times(M-1)$ matrix with entries
$$
B_{i, j}:=\int_{0}^{1} \varphi_{i} \varphi_{j} d x, \quad i, j=1, \ldots, M-1,
$$
and $\varphi_{1}, \ldots, \varphi_{M-1}$ are the finite element basis functions. Use exact integration to find the entries of C and B.
e) By choosing appropriate quadrature modify the mass matrix B into a new matrix \hat{B} so that the resulting method gives the same numerical solution obtained from (4).

```
2 
    H
    H0
    HE
```


Problem 2

a) Consider the linearized Korteweg-deVries equation (KdV), as a pure initial value problem

$$
u_{t}+\rho u_{x}+u_{x x x}=0, \quad u(-\infty)=u(\infty)=0, \quad x \in \mathbf{R},
$$

ρ a given real constant.
Consider the interval $[-L, L]$ with $L>0$ sufficiently large, consider the grid $x_{m}=-L+h m, h=2 L / M, m=0, \ldots, M$. Discretize the problem with central finite differences in space and with the trapezoidal rule in time (the Crank-Nicolson method), let $u\left(x_{0}, t\right)=u\left(x_{M}, t\right)=0$.
Use the following central differences approximation of the third derivative

$$
\left.u_{x x x}\right|_{x_{m}}=\frac{u\left(x_{m+3}\right)-3 u\left(x_{m+1}\right)+3 u\left(x_{m-1}\right)-u\left(x_{m-3}\right)}{8 h^{3}}+\mathcal{O}\left(h^{2}\right) .
$$

Show that the obtained method is Von Neumann stable.
b) Consider the energy function

$$
H(u(t))=\frac{1}{2} \int_{-\infty}^{\infty} u_{x}^{2} d x-\frac{\rho}{2} \int_{-\infty}^{\infty} u^{2} d x .
$$

Assume u and all its derivatives with respect to x vanish for $|x| \rightarrow \infty$. Using integration by parts, show that H is constant along solutions of the linearized $K d V$ equation (i.e. $\frac{d H(u(t))}{d t}=0$).
c) Assume now that D is the skew-symmetric matrix corresponding to the central finite difference discretization of the first derivative ${ }^{3}$. It is easy to verify that the matrix A corresponding to the central difference discretization of the third derivative is such that $A=D^{3}$. Write the Crank-Nicolson method in the form $U^{n+1}=C U^{n}$ for an appropriate matrix C and with $U^{n}=\left(u_{1}^{n}, \ldots, u_{M-1}^{n}\right)^{T}$ the numerical solution. Show that the discrete energy function

$$
H \approx \tilde{H}(U):=\frac{1}{2}\|D U\|_{2}^{2}-\frac{\rho}{2}\|U\|_{2}^{2}, \quad U \in \mathbf{R}^{M-1}
$$

is constant along numerical solutions given by the Crank-Nicolson method, that is $\tilde{H}\left(U^{n+1}\right)=\tilde{H}\left(U^{n}\right)$. Here $\|\cdot\|_{2}$ is the grid-function-norm and is an approximation of the integrals defining H.

[^1]
Problem 3

a) Consider the partial differential equation

$$
u_{t}=u_{x x}-\gamma u, \quad 0<x<1, \quad t \in[0, T], \quad \gamma>0,
$$

with Neumann boundary conditions

$$
-\left.\partial_{x} u\right|_{x=0}=0,\left.\partial_{x} u\right|_{x=1}=1
$$

We discretize in space using the method of line discretizations. We use a second order discretization of the boundary conditions, and a central difference discretization of the second derivative with respect to x, and we obtain a linear system of ordinary differential equations of the type

$$
\begin{equation*}
\dot{U}=A U+g, \tag{5}
\end{equation*}
$$

where $U(t):=\left(u_{0}(t), \ldots, u_{M}(t)\right)^{T}$ and $u_{m}(t) \approx u\left(x_{m}, t\right), m=0, \ldots, M$. Find A and g.
b) We take the exact solution of the linear system of ordinary differential equations (5) as numerical approximation of the solution of partial differential equation, that is

$$
\begin{equation*}
\left(u_{0}^{n}, \ldots, u_{M}^{n}\right)^{T}:=\left(u_{0}\left(t_{n}\right), \ldots, u_{M}\left(t_{n}\right)\right)^{T}, \quad U^{n}:=U\left(t_{n}\right), \tag{6}
\end{equation*}
$$

and $u_{m}^{n} \approx u\left(x_{m}, t^{n}\right)$.
Consider the exact solution tabulated at the nodes of the discretization and at time $t, \mathbf{u}(t)=\left(u\left(x_{0}, t\right), \ldots, u\left(x_{M}, t\right)\right)^{T}$, the local truncation error is

$$
\tau:=\dot{\mathbf{u}}-A \mathbf{u}-g,
$$

and you may use that $\|\tau\|_{2}=C h^{2}+\mathcal{O}\left(h^{4}\right)$.
Prove convergence of the finite difference scheme.

Extra information

Assume g is a constant vector, A is invertible and I is the identity matrix ${ }^{4}$. One can solve (5) exactly by the variation of constants formula to obtain

$$
\begin{equation*}
U(t)=\exp \left(\left(t-t_{0}\right) A\right) U\left(t_{0}\right)+f\left(t-t_{0}, A\right) g, \tag{7}
\end{equation*}
$$

with

$$
f\left(t-t_{0}, A\right)=A^{-1}\left(\exp \left(\left(t-t_{0}\right) A\right)-I\right), \quad \exp (s A):=\sum_{k=0}^{\infty} \frac{s^{k}}{k!} A^{k} .
$$

[^2]Here $\exp (s A)$ is the matrix exponential and if A is diagonalizable, also $\exp (s A)$ is diagonalizable,

$$
A=X \Lambda X^{-1} \Rightarrow \exp (s A)=X \exp (s \Lambda) X^{-1}
$$

You can use (7) to write the numerical approximation U^{n} of (6) and to obtain $U^{n+1}=C U^{n}+q$, with appropriate C and q.

Piecewise-linear finite element functions

$$
\begin{gathered}
\phi_{j}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{j-1}\right)}{h} & x_{j-1} \leq x \leq x_{j}, \\
\frac{\left(x_{j+1}-x\right)}{h} & x_{j} \leq x \leq x_{j+1}, \quad j=1, \ldots, M-1, \\
0 & \text { otherwise, }
\end{array}\right. \\
\phi_{M}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{M-1}\right)}{h} & x_{M-1} \leq x \leq x_{M}, \\
0 & \text { otherwise },
\end{array} \phi_{0}(x)=\left\{\begin{array}{cc}
\frac{\left(x_{0}-x\right)}{h} & x_{0} \leq x \leq x_{1}, \\
0 & \text { otherwise } .
\end{array}\right.\right.
\end{gathered}
$$

Eigenvalues of the discrete Laplacian

Consider the $(M-1) \times(M-1)$ matrix $B^{h}=1 / h^{2} \operatorname{tridiag}(1,-2,1)$, discretization of the Laplacian (with homogeneous Dirichlet boundary conditions). The eigenvalues of B^{h} are

$$
\lambda_{p}\left(B^{h}\right)=2 / h^{2}(\cos (p \pi h)-1), \quad p=1, \ldots, M-1 .
$$

[^0]: ${ }^{1}$ Here I is the identity matrix and $\operatorname{tridiag}(\alpha, \beta, \gamma)$ is the tridiagonal matrix with β on the main diagonal, α on the sub-diagonal and γ on the super-diagonal.

[^1]: ${ }^{3}$ Skew-symmetric matrices are diagonalizable with pure imaginary eigenvalues and a set of orthonormal eigenvectors: $D=V \Lambda V^{H}$ with λ a diagonal matrix with diagonal elements $\lambda_{m}=i \alpha_{m}, m=1, \ldots, M-1$, with $i=\sqrt{-1}, \alpha_{m}$ real, and $V^{H} V=I . V^{H}$ is the conjugatetranspose of V.

[^2]: ${ }^{4}$ The assumptions g constant and A invertible are not essential to apply the variation of constants formula, but are useful to simplify the formulae.

