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Science and Technology
Department of Mathematical Sciences

Contact during the exam:
Bawfeh K. Kometa, tlf. 735 91972

EXAM IN TMA4212
25. may 2009
Time: 09:00-13:00

Allowed material: code B — All printed and handwritten material is allowed.
A simple calculator is allowed.

Problem 1

a) Consider the boundary value problem

—EUgr +au = 0 (1)
u(0) =0, (2)
€>0,a>0and 0 < x < 1. Consider a mesh xg,...,xy with x,, =

mh and h = 1/M, and denote with u,, the numerical approximation of
u(xy,). Discretize this problem with central differences, the linear system
of algebraic equations you obtain is

AU = b, (4)
with
€ ... _
Al =aTl - ﬁtrldlag(l, —2,41), U= (up,...,up—1)Y, beRML

Find b.!

Consider the local truncation error 7 := A"u — b where
.f T
u = (u(x1),...,u(xp-1))",

is the exact solution of (1) tabulated at the nodes of the discretization
mesh. The solution u of the boundary value problem is smooth bounded

'Here I is the identity matrix and tridiag(c, 3,7) is the tridiagonal matrix with 3 on the
main diagonal, a on the sub-diagonal and = on the super-diagonal.
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b)

d)

and with bounded derivatives on [0, 1]. Using Taylor expansion show that
the j-th component of the local truncation error is

7j = =15 tnzas(@;) — O(h).

Consider now the error E" := U — u, and show that the method is con-
vergent.

Show that

uj = (M — M) =), j=1,...,M -1,
with
n=1+0—+\0o(2+0), m=1+0++/0o(2+0),

where o = ah?/(2¢).

Consider a finite element discretization of (1) using piecewise-linear finite
elements on the mesh xq,...,zy = 1 with z,, = mh and h = 1/M. Use
the bilinear form

1 1
a(u,v) = 5/ Uy Vg da + a/ v dz,
0 0

to write the Galerkin formulation of the problem using appropriate func-
tion spaces?, assume u € H}E and v € H}. Explain the connection between
the Galerkin formulation and (1).

Write now the Galerkin method and the corresponding linear system of
equations

(C+B)U =b,

where C' is the stiffness matrix and B is the mass matrix. Recall that the
mass matrix B is the (M — 1) x (M — 1) matrix with entries

1
Bm::/ pipjde, 1,j=1,...,M —1,
0

and ¢1,...,op—1 are the finite element basis functions. Use exact inte-
gration to find the entries of C' and B.

By choosing appropriate quadrature modify the mass matrix B into a new
matrix B so that the resulting method gives the same numerical solution
obtained from (4).

H'((0,1)) := {v € L2((0,1))|vabsolutely continuouson [0, 1], dzv € L2((0,1)) },

=

°r

£
i

{v e H'((0,1))[v(0) = v(1) =0},

HE((0,1) = {ve H'((0,1)]|v(0)=0,v(1)=1}.
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Problem 2

a)

b)

Consider the linearized Korteweg-deVries equation (KdV), as a pure ini-
tial value problem

Up + Pz + Ugge = 0, u(—oo) = U(OO) =0, z€R,

p a given real constant.

Consider the interval [—L, L] with L > 0 sufficiently large, consider the
grid ¢, = =L+ hm, h =2L/M, m =0,..., M. Discretize the problem
with central finite differences in space and with the trapezoidal rule in
time (the Crank-Nicolson method), let u(zo,t) = u(zas, t) = 0.

Use the following central differences approximation of the third derivative

u(xym, — 3u(zm, + 3u(xm—_1) — w(Tm—
Ussaly, = (m+3) — 3u( +1)8h3 (m-1) — u( 3)+O(h2).

Show that the obtained method is Von Neumann stable.

Consider the energy function

1 oo [e.e]
H(u(t))zz/ uxde—g/ u? de.

— 00

Assume u and all its derivatives with respect to x vanish for |z| — oo.
Using integration by parts, show that H is constant along solutions of the
linearized KdV equation (i.e. % =0).

Assume now that D is the skew-symmetric matrix corresponding to the
central finite difference discretization of the first derivative?. It is easy to
verify that the matrix A corresponding to the central difference discretiza-
tion of the third derivative is such that A = D3. Write the Crank-Nicolson
method in the form U"t! = CU™ for an appropriate matrix C' and with
U = (uf,...,u%; ;)T the numerical solution. Show that the discrete
energy function

N 1 P —
H~ H(U) = | DU - SUj3, U e M
is constant along numerical solutions given by the Crank-Nicolson method,

that is H(U™*') = H(U™). Here || - || is the grid-function-norm and is
an approximation of the integrals defining H.

3Skew-symmetric matrices are diagonalizable with pure imaginary eigenvalues and a set
of orthonormal eigenvectors: D = VAV with X a diagonal matrix with diagonal elements
Am = iom, m=1,...,M — 1, with i = v/—1, o real, and VEV = I. V¥ is the conjugate-
transpose of V.
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Problem 3
a) Consider the partial differential equation
U= Uy —yu, 0<z<l1, te€l0,T], >0,
with Neumann boundary conditions
—0pu|,_g =0, Opul,_, = 1.

We discretize in space using the method of line discretizations. We use
a second order discretization of the boundary conditions, and a central
difference discretization of the second derivative with respect to z, and
we obtain a linear system of ordinary differential equations of the type

U= AU +g, (5)

where U (t) := (ug(t),...,up ()T and wp () ~ u(zm,t), m=0,..., M.
Find A and g.

b) We take the exact solution of the linear system of ordinary differential
equations (5) as numerical approximation of the solution of partial differ-
ential equation, that is

(ug, ... ,uﬁ/[)T = (uo(tn), - .. ,uM(tn))T, U":=Ul(t,), (6)

and u)!, ~ u(xm,, t").
Consider the exact solution tabulated at the nodes of the discretization
and at time ¢, u(t) = (u(xo,1),...,u(xy,t))T, the local truncation error
is

T:=u—Au-—g,
and you may use that ||7||o = Ch% + O(h%).
Prove convergence of the finite difference scheme.

Extra information

Assume g is a constant vector, A is invertible and I is the identity matrix*.
One can solve (5) exactly by the variation of constants formula to obtain

U(t) = exp((t —to)A)U(to) + f(t —t0, 4) g, (7)

with

[e'¢) Sk
F(t—to, A) = A (exp((t — to)A) — I), exp(sA) =) EAk'
k=0 "

4The assumptions g constant and A invertible are not essential to apply the variation of
constants formula, but are useful to simplify the formulae.
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Here exp(sA) is the matrix exponential and if A is diagonalizable, also
exp(sA) is diagonalizable,

A=XAX"' = exp(sA) = Xexp(sA) X 1.

You can use (7) to write the numerical approximation U™ of (6) and to
obtain U™l = CU™ + ¢, with appropriate C and gq.
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Piecewise-linear finite element functions

(%"Zj_l) rj1 <x <y,
¢j(z) = w w; <z <y, J=L. M-L
0 otherwise,

om(z) = _
0 otherwise.

7(%?1_1) ryo1 <z < apy, Loh—w) zo <z < 171,
_ po(z) =
0 otherwise,

Eigenvalues of the discrete Laplacian

Consider the (M — 1) x (M — 1) matrix B" = 1/h? tridiag(1, —2, 1), discretiza-
tion of the Laplacian (with homogeneous Dirichlet boundary conditions). The

eigenvalues of B" are

M\p(B") = 2/h? (cos(prh) — 1), p=1,...,M —1.



