TMA4212 Numerical solution of partial differential equations with finite difference methods

Solutions to Problem Set 1

Problem 1. Let $A \in \mathbb{R}^{n \times n}$ be a tridiagonal matrix with constant diagonals,

$$A = \begin{pmatrix} a & b & & & \\ c & a & b & & \\ & \ddots & \ddots & \ddots & \\ & & c & a & b \\ & & & & c & a \end{pmatrix}$$

where bc > 0. Let $D = \text{diag}(1, \alpha, \alpha^2, \dots, \alpha^{n-1})$. Show that there exists (find) an α so that $S = D^{-1}AD$ is symmetric. What does S look like?

Solution. Note that $D^{-1} = \text{diag}(1, \alpha^{-1}, \alpha^{-2}, \dots, \alpha^{-n+1})$. We then see that

$$S_{ij} = (D^{-1}AD)_{ij} = \alpha^{j-i}A_{ij},$$

so S is also tridiagonal with constant diagonals. We must require that $S_{i,i+1} = S_{i+1,i}$, which means

$$\alpha b = \alpha^{-1}c \qquad \Longrightarrow \qquad \alpha = \sqrt{c/b},$$

which is fine since bc > 0. Then $S_{i,i+1} = S_{i+1,i} = \sqrt{bc}$, so S is the tridiagonal and symmetric matrix $S = \text{trid}(\sqrt{bc}, a, \sqrt{bc})$.

Problem 2. The *p*-norm of a vector $x \in \mathbb{R}^n$ is given by

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Show that if $D = \text{diag}(d_1, \ldots, d_n)$, then the associated matrix norm of D is given by

$$||D||_p = \max_{1 \le i \le n} |d_i| = \rho(D),$$

where $\rho(D)$ is the spectral radius of D.

Solution. For arbitrary x,

$$||Dx||_p = \left(\sum_i |d_i x_i|^p\right)^{1/p} \le \max_i |d_i| \left(\sum_i |x_i|^p\right)^{1/p} = \rho(D) ||x||_p,$$

since the eigenvalues of a diagonal matrix are on the diagonal. Then we see that $||D||_p \leq \rho(D)$. If D = 0, the statement is trivially true, so suppose $D \leq 0$, and let k be so that $\max_i |d_i| = |d_k| = \rho(D) > 0$. Now let

$$x = \frac{|d_k|}{d_k} e_k \qquad \Longrightarrow \qquad \|Dx\|_p = |d_k| = \rho(D) = \rho(D) \|x\|_p$$

since $||x||_p = 1$, and we conclude that $||D||_p = \rho(D)$.

Problem 3.

a) Let $\|\cdot\|$ be a vector norm on \mathbb{R}^n , and let T be an invertible $n \times n$ matrix. Show that the function

$$f_T(x) = ||T^{-1}x||$$

defines a vector norm on \mathbb{R}^n . We then write $||x||_T = f_T(x) = ||T^{-1}x||$ for this norm.

Solution. We must check the axoims for norms, assuming that $\|\cdot\|$ already satisfies them.

- 1. Clearly $f_T(x) = ||T^{-1}x|| > 0$ and $f_T(x) = 0 \Rightarrow T^{-1}x = 0 \Rightarrow x = 0$.
- 2. $f_T(\alpha x) = ||T^{-1}\alpha x|| = |\alpha|||T^{-1}x|| = |\alpha|f_T(x).$

3.
$$f_T(x+y) = ||T^{-1}(x+y)|| = ||T^{-1}x + T^{-1}y|| \le ||T^{-1}x|| + ||T^{-1}y|| = f_T(x) + f_T(y).$$

b) We define the matrix norm associated with the vector norm $\|\cdot\|$ as usual with

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

Show that the matrix norm associated with the vector norm $\|\cdot\|_T$ is

$$||A||_T = ||T^{-1}AT||.$$

Solution. By definition,

$$||A||_T = \sup_{x \neq 0} \frac{||Ax||_T}{||x||_T} = \sup_{x \neq 0} \frac{||T^{-1}Ax||}{||T^{-1}x||}.$$

Now let $y = T^{-1}x$, and note that as x runs through $\mathbb{R}^n \setminus \{0\}$, so will y. For this reason, we can take the supremum over y instead, to get

$$||A||_T = \sup_{y \neq 0} \frac{||T^{-1}ATy||}{||y||} = ||T^{-1}AT||.$$

c) In the classes we learned that the spectral radius $\rho(A)$ of a matrix A satisfies

 $\rho(A) \le \|A\|$

for every matrix norm $\|\cdot\|$. Suppose A is fixed. Show that for every $\epsilon > 0$ there is a matrix norm $\|\cdot\|_{A,\epsilon}$ such that

$$||A||_{A,\epsilon} \le \rho(A) + \epsilon.$$

Hint. Use the Jordan form of A to modify the p-norm as in b). Modify this norm further by using a diagonal matrix in the same form as D from problem 1.

Solution. Let $A = TJT^{-1}$ be a Jordan form factorization of A. From the above we know that $||A||_T = ||T^{-1}AT|| = ||J||$. The Jordan matrix J has the eigenvalues of A on the diagonal, and possibly some 1's on the first superdiagonal. Now with

$$D = \operatorname{diag}(1, \epsilon, \epsilon^2, \dots, \epsilon^{n-1}),$$

we construct the norm

$$||A||_{TD} = ||D^{-1}JD||.$$

As in problem 1, we see that $(D^{-1}JD)_{ii} = J_{ii}$ and $(D^{-1}JD)_{i,i+1} = \epsilon J_{i,i+1}$, where $J_{i,i+1}$ is either 0 or 1. All other elements are zero. Let us choose the base norm $\|\cdot\| = \|\cdot\|_1$, which we remember is maximal column sum. Then we get

$$||A||_{TD} = ||D^{-1}JD||_1 \le \rho(A) + \epsilon,$$

so this is the norm we seek.