TMA4212 Numerical solution of partial differential
equations with finite difference methods
Solutions to Problem Set 2

Problem 1. The Crank—Nicolson method for the equations u; = u,, can be written
r r
1 752) Untl = (1 752) ur,

where U is an approximation to u(nk, mh) and r = k/h?. We will use two different steplengths
along the time axis, k; = 0.01 and k2 = 0.1, and a fixed steplength h = 1/M = 0.1 along the
x-axis. We construct a solution vector

Ut = (U UF, . U

after which the method can be written in matrix form,

AU = BU™ + ¢" = ",

where
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and ¢g" fixes the boundary conditions,

)

9" = [rUF + Ug)/2,0,...,0]"
where Uy = u(0,nk), and we also define U}, = 0.

When implementing this in MATLAB, we should appreciate that the matrices involved are
tridiagonal and thus highly sparse. We can generate these matrices using a function such as
spdiags, and we can use Gauss-elimination (or an even more efficient tridiagonal algorithm) to
solve the system AU™! = ¢". A program to do this is given below. The total solution is stored
in a matrix Utot, where Utot [m,n]= U _}. Figure 1 shows the numerical solution as a function
of x and t. The solution appears to approach 1 — x as t grows. We can compare this with the
exact stationary solution ue. (). We must solve
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(¢) A cross-section for z = 0.2.

(d) A cross-section for z = 0.2, but with M =
100, k1 = 0.001 and k2 = 0.01.

Figure 1: Plots.

M=10; k1=0.01; k2=0.1; % Resolution
h=1/M; rl=kl/h~2; r2=k2/h-~2;
N1=0.1/k1l; N=N1+9; % Steps in time
tid =[0:k1:0.1 0.1+k2:k2:0.1+(N-N1)xk2]; % Time—amis
x=0:h:1; % X—azxis
UO=ones (1,N); % Boundary values
for n=1:N1
UO(n)=10xnxkl;
end

UM=zeros (1 ,N);
Ustart—zeros (M—1,1);

% Matriz generation

d=ones (M—1,1);

% Initial condition

A=spdiags([—r1%d/2 (14+r1)xd —rlsd/2],—1:1,M—1,M—1);
B=spdiags ([r1%d/2 (1—r1)xd

U=zeros (M—1,N);
c=BxUstart ;

= (1)+11/2%U0(1);
=A\c;

n=1:N1-1
c=BxU(:,n);

%
%
%

%

%

rixd/2], —1:

M—1,M—1);
Allocating memory for solution
First c—vector

Boundary
First time
First

contribution
step
set of iterations

c(1)=c(1)+r1/2%(U0(n)+U0(n+1));

U(:,n+1)=A\c;
end

% New matrices

A=spdiags([—r2%d/2 (1+r2)xd —r2%d/2], —1:1,M—1,M

(new k)

B=spdiags ([r2%d/2 (1—r2)xd

for n=N1:N-—-1
c=B*U(:,n);

1);

r2xd/2], —1:1,M—1,M—1);

c(1)=c(1)+r2/2+(U0(n)+U0(n+1));

U(:,n+1)=A\c;
end

Utot=[[0 UO];[ Ustart U];[0 UM]];

mesh(tid ,x,Utot);
view (—50,50);

% Second set of iterations
% Total solution
% Plotting



which yields precisely uo(z) =1 — .
A closer look at figure 1 reveals some small oscillations, made more obvious by a plot along
x = 0.2. These are typical for Crank—Nicolson, but can be improved by increasing the resolution.

Problem 2. We consider the limit of the semidiscrete equation as h — 0 (and m — oo so that
mh = x is constant). After dividing the equation by h, we find the following “inverse discretization”
for the relevant terms (F and T are assumed continuous and differentiable):

(Frg1/2 + Frne1y2)/2 —  F(mh) = F(x)
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Problem 3. We will try to justify the deduction given in the problem text. By Taylor expansion
we have
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This can be inserted into the equation d;u = 92u, giving the first line of the problem. Since
d2u = 020,u, we can use (1) again. The term 15;h*920,u is included in the O(h*)-term, yielding
line 4.

By operating with (1 4+ 1502)~! on both sides of line 4, we arrive at

1., 41 _
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which by the trapezoidal rule gives
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By multiplying with 1+ %53, we reach the expression and the method given in the problem. The

truncation error is then given by

n 1 T " 1 r n
Using the PDE and Taylor expansion we have (denoting u = ul,, us = (u)?, etc.):
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Inserting this into (2) and cancelling a lot, we arrive at
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Problem 4. By Taylor expansion,
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