
TMA4212 Numerical solution of partial differential
equations with finite difference methods

Solutions to Problem Set 3

Problem 1. We start by semidiscretizing the equation. We split the interval 0 ≤ x ≤ c into M1

parts, each with length h1 = c/M1, and the interval c ≤ x ≤ 1 into M2 parts, each with length
h2 = (1− c)/M2. We then let Um(t), 0 ≤ m ≤M = M1 +M2, as usual denote the approximation
to the exact solution (so Um(t) ≈ u(mh1, t) for 0 ≤ m ≤ M1; Um(t) ≈ u(c+(m−M1)h2, t) for
M1 < m ≤M). We form the solution vector

U(t) ≡ [U1(t), U2(t), . . . , UM−1(t)]
T
,

and seek a matrix A so that
∂tU(t) = AU(t) + g(t).

For points not on the boundary x = c we use the normal central difference approximation,

∂tUm =
a1

h2
1

δ2xUm, 1 ≤ m ≤M1 − 1

∂tUm =
a2

h2
2

δ2xUm, M1 + 1 ≤ m ≤M − 1.

The problem is ∂tUM1 . We must use the two conditions

u1(c, t) = u2(c, t), t > 0, (1)

λ1u
1
x(c, t) = λ2u

2
x(c, t), t > 0. (2)

In the above we used a second order approximation, so we would like to keep doing this. To
achieve this we introduce two additional “dummy” points which we will subsequently eliminate.
We introduce U∗M1+1 as an approximation to u1(c+ h1, t), i.e. the continuation of the u1-solution
into area 2. Then we have a second order approximation to u1

x(c, t) given by

u1
x(c, t) =

U∗M1+1 − UM1−1

2h1
+O(h2

1).

Similarly, we introduce U∗M1−1 ≈ u2(c− h2, t), yielding

u2
x(c, t) =

UM1+1 − U∗M1−1

2h2
+O(h2

2).

Due to continuity, UM1 should be the same from the left and right. Using central differences and
our dummy points, we can now find two expressions for ∂tUM1 ,

∂tUM1 =
a1

h2
1

[
U∗M1+1 − 2UM1 + UM1−1

]
=
a2

h2
2

[
UM1+1 − 2UM1 + U∗M1−1

]
(3)

These two expressions give one equation to decide U∗M1±1, while (2) gives another.

λ1

2h1

[
U∗M1+1 − UM1−1

]
=

λ2

2h2

[
UM1+1 − U∗M1−1

]
.

So we have two equations with two unknowns, and after some effort we arrive at

U∗M1+1 =
2a2h

2
1λ2UM1+1 + 2λ2(a1h

2
2 − a2h

2
1)UM1 + h2(a2h1λ1 − a1h2λ2)UM1−1

h2(a2h1λ1 + a1h2λ2)
.

1

Inserting this into (3) we get (after some more effort),

∂tUM1 =
2a1a2

h1h2

λ2h1UM1+1 − (λ2h1 + λ1h2)UM1 + λ1h2UM1−1

λ2a1h2 + λ1a2h1
. (4)

If all parameters are equal in area 1 and 2 we get the ordinary central difference. This completes
the matrix A, with the following structure:

A =



 A1


[v1 v2 v3] A2




(5)

where v1, v2, og v3 is given by (4), so that ∂tUM1 = v1UM1−1+v2UM1+v3UM1+1. The matrix A1

is the (M1−1)×M1-matrix,

A1 =
a1

h2
1



−2 1 0 · · · · · · 0

1 −2 1
...

0
.

...
...

. 0
0 1 −2 1


,

while A2 is the (M2−1)×M2-matrix,

A2 =
a2

h2
2



1 −2 1 0

0
.

...
...

. 0
... 1 −2 1
0 · · · · · · 0 1 −2


.

The whole of A is tridiagonal, and if all parameters are equal for the two areas, we see that the
boundary fades away, and we remain with our ordinary central difference matrix.

We then discretize time as well, so that Un
m is an approximation to Um(nk). If we use the

θ-method, we get the method

(1− θkA)Un+1 = [1 + (1− θ)kA]Un + gn, (6)

where gn handles the boundary conditions, and is given, in this case, by

gn = θk



a1
h2
1
g0((n+ 1)k)

0
...
0

a2
h2
2
g1((n+ 1)k)

+ (1− θ)k



a1
h2
1
g0(nk)
0
...
0

a2
h2
2
g1(nk)

 . (7)

Problem 2. Below we give a Matlab program to implement the method (6) with the conditions
given in problem 1. The program is constructed much the same as in problem set 2. Notice how
easy it is to construct the matrix A in (5) from the relevant parts. The solution is plotted in figure

2

1, using θ = 1 (Backwards Euler). In figure 2 the solution for t = 0.02 is plotted, and we see that
the derivative is continuous over x = 0.5, as it should be (try λ1 6= λ2, to see what happens!). In
figure 3 and 4 the time development for the solution in the point x = 0.75 is plotted, computed
with θ = 1 and θ = 0.5 (Crank–Nicolson) respectively, and we can see quite clearly the oscillations
typical for the latter method. You can try Forward Euler (θ = 0) yourself using kai/h

2
i > 0.5

(outside the stability area)—not very good
The relatively large change during the first time step in figure 3 can be attributed to the

fact that the system is forced into an “uncomfortable” initial condition. Note that the way the
constants ai are involved, indicates that an optimal choice, numerically speaking, should have
h2

1/h
2
2 = a1/a2.

The Matlab program:
a1=1; a2=100; l1=1; l2=1; c=0.5; % Constants
M1=20; M2=20; k=0.01; N=20; t=1; % Accuracy

h1=c/M1; h2=(1-c)/M2; M=M1+M2;

tid=[0:k:N*k];
x=[0:h1:c c+h2:h2:1];

U0=zeros(1,N); % Homogeneous boundary cond.
UM=zeros(1,N);
Ustart=zeros(M-1,1); % Initial condition
for i=1:M1

Ustart(i)=4*(i*h1)*(1-i*h1);
end
for i=1:M2-1

Ustart(M1+i)=4*(c+i*h2)*(1-(c+i*h2));
end
U0start=0;
UMstart=0;

d=ones(M,1);

% Generating the matrix A

A1=a1/h1^2*spdiags([d -2*d d],-1:1,M1-1,M1);
A2=a2/h2^2*spdiags([d -2*d d],0:2,M2-1,M2);
vv=2*a1*a2/(h1*h2*(a1*l2*h2+a2*l1*h1));
v= vv*[l1*h2 -(l2*h1+l1*h2) l2*h1] ;
A=[A1 zeros(M1-1,M2-1);
zeros(1,M1-2) v zeros(1,M2-2);
zeros(M2-1,M1-1) A2];

% Matrices involved in the theta-method

B=speye(M-1)-t*k*A;
C=speye(M-1)+(1-t)*k*A;

U=zeros(M-1,N);

% First step

c=C*Ustart;

% Boundary conditions:
% (could be removed, as they are homogeneous)

c(1)=c(1)+t*k*a1/h1^2*U0(1)+(1-t)*k*a2/h2^2*U0start;
c(M-1)=c(M-1)+t*k*a1/h1^2*UM(1)+(1-t)*k*a2/h2^2*UMstart;
U(:,1)=B\c;

for n=1:N-1 % The rest of the time steps
c=C*U(:,n);
c(1)=c(1)+t*k*a1/h1^2*U0(n+1)+(1-t)*k*a2/h2^2*U0(n);
c(M-1)=c(M-1)+t*k*a1/h1^2*UM(n+1)+(1-t)*k*a2/h2^2*UM(n);
U(:,n+1)=B\c;

end

% Plotting

Utot=[[U0start U0];[Ustart U];[UMstart UM]];
mesh(tid,x,Utot);
view(130,50);

Problem 3. Choose a k so that
|Uk| = max

0≤m≤M
|Um|.

Then, by the triangle inequality (r > 0)

|vk| = |(1+2r)Uk−r(Uk−1+Uk+1)| ≥
∣∣∣ |(1+2r)Uk| − r |Uk−1+Uk+1|

∣∣∣ ≥ |(1+2r−2r)Uk| = |Uk|,

since |Uk±1| ≤ |Uk| giving |Uk−1 + Uk+1| ≤ 2|Uk|. Thus |vk| is greater than all |Ui|, and we have

max
0≤m≤M

|Um| ≤ max
1≤m≤M−1

|vm| (8)

Backwards Euler is given by
(1− rδ2x)Un+1

m = Um,

with truncation error
(1− rδ2x)un+1

m − un
m = O(k2 + kh2).

3

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1

0

0.5

1

tx

Figure 1: Numerical solution wrt. x and t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

u
(x

,t
=

0
.0

2
)

Figure 2: A cross section for t = 0.02.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

u
(x

=
0

.7
5

,t
)

Figure 3: A cross section for x = 0.75.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

u
(x

=
0
.7

5
,t
)

Figure 4: A cross section for x = 0.75 with
Crank–Nicolson.

The discretization error zn
m = un

m − Un
m then satisfies

(1− rδ2x)zn+1
m = zn

m +O(k2 + kh2). (9)

If we introduce Zn = max
0≤m≤M

|zn
m|, it follows from (8) and (9) that

Zn+1 ≤ Zn +A(k2 + kh2)

for a constant A (when k and h are small). By repeated application of this inequality, as well as
Z0 = 0 (U0

m = u0
m using the initial condition), we get

Zn ≤ Zn−1 +A(k2 + kh2) ≤ Zn−2 + 2A(k2 + kh2) ≤ · · · ≤ Z0 + nkA(k + h2) = tA(k + h2).

So we see that the error Zn → 0 when k, h→ 0 so that the time t = nk is held constant. In other
words, Backwards Euler converges for arbitrary r > 0.

Problem 4. We apply Euler’s method on the equation ut = uxx + γu. By introducing central
differences, we get

1
k

(
Un+1

m − Un
m

)
=

1
h2
δ2xU

n
m + γUn

m, i.e. Un+1
m =

(
1 + γk + rδ2x

)
Un

m,

4

with r = k/h2. In matrix form, this becomes

Un+1 = AUn + gn,

A =



1+γk−2r r 0 · · · · · · 0

r 1+γk−2r r
...

0
.

...
...

. 0
... r 1+γk−2r r
0 · · · · · · 0 r 1+γk−2r


.

A necessary condition for stability is ρ(A) ≤ 1 + µk (where µ is independent k and h). Since A
is symmetrical, this will also be sufficient. We know the eigenvalues of A (see the note), and they
are given as

λm = 1 + γk − 2r + 2r cos
(πm
M

)
= 1 + γk − 4r sin2

(πm
2M

)
, m = 1, 2, . . . ,M − 1.

Since
s2 ≡ sin2

(π

2M

)
≤ sin2

(πm
2M

)
≤ sin2

(
π(M − 1)

2M

)
= cos2

(π

2M

)
≡ c2,

we have

ρ(A) = max
1≤m≤M−1

∣∣∣1 + γk − 4r sin2
(πm

2M

)∣∣∣ = max
{
|1 + γk − 4rs2|, |1 + γk − 4rc2|

}
.

We define F = 1+γk−4rs2 and G = 1+γk−4rc2 and demand that |F | ≤ 1+µk and |G| ≤ 1+µk.
As h gets small, we get s = sin(πh/2) → πh/2 and c → 1. Thus we have F > 0 small enough k,
and we require

F ≤ 1+µk ⇒ γ ≤ µ+ 4s2/h2 ⇒ Satisfied if µ = µ1 = max{0, γ − π2} (for small h),
G ≤ 1+µk ⇒ γ − 4c2/h2 ≤ µ ⇒ OK for µ = µ1,

G ≤ −1−µk ⇒
[
4c2/h2 − (µ+ γ)

]
k ≤ 2 ⇒ k ≤ 2

4c2/h2 − (µ+ γ)
=

1
2

h2

c2−(µ+γ)h2/4

In the last transition we divide by something positive on both sides of the inequality, as c/h→∞
when h→ 0. So we can give the following stability requirements:

k ≤


1
2

h2

c2 − (2γ − π2)h2/4
for γ > π2

1
2

h2

c2 − γh2/4
for γ ≤ π2

We see that when h→ 0, these reduce to k/h2 ≤ 1
2 .

5

