TMA4212 Numerical solution of differential equations with difference methods

Problem Set 5

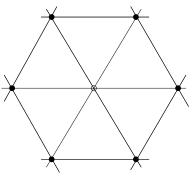
Problem 1. A difference equation has the form

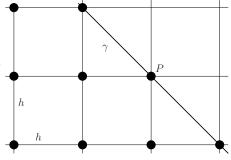
$$AU^{n+1} = BU^n + d^n$$

and the truncation error τ^n is defined as

$$Au^{n+1} = Bu^n + d^n + \tau^n.$$

Show that the discretization error $e^n = u^n - U^n$ can be written


$$e^{n} = v^{n-1} + Cv^{n-2} + \dots + C^{n-2}v^{1} + C^{n-1}v^{0}$$


where $C = A^{-1}B$, $v^l = A^{-1}\tau^l$, and where we have assumed $e^0 = 0$. Assume that $||C^n|| \leq L$ for all n and show that

$$||e^n|| \le T \cdot L \cdot \max_{l \le T/k} ||\frac{1}{k}v^l||$$
 for enhver $n \le T/k$.

Problem 2. Find a discretization of the Laplacian $\Delta = \partial_x^2 + \partial_y^2$ on a hexagonal grid (see figure). Give the first term of the truncation error. *Hing:* Use symmetry.

Problem 3. Find one or more difference approximations to $\partial_x \partial_y u$ on a uniform rectangular grid (same steplength in both directions)

Problem 4. Discretize $\Delta u = f$ i *P* with the condition $\partial_n u + au = g$ along the line γ (see figure) using box integration.