
TMA4215:
Lecture notes on numerical solution of ordinary differential

equations.

Anne Kværnø

October 1, 2018

Abstract

These lecture notes are supplementary to the text book used in TMA4215 Numerical
Mathematics. The notes focus on numerical solution of ordinary differential equations,
and will replace the corresponding chapters in the textbooks. The notes are to some extend
a revision and translation of the note “Forelesningsnotater i Numerisk Matematikk” by
Brynjulf Owren, but there are some significant differences.

The notes will be made available at the webpage week by week.
I would be grateful for all kind of feedback on the notes, positive and negative. In

particular, if you find spelling errors (or other errors), please give me a hint.

Contents

1 Eulers method. 3

2 Some background on ODEs. 6

3 Numerical solution of ODEs. 8

3.1 Some examples of one-step methods. 9

3.2 Some examples of linear multistep methods. 10

4 Runge-Kutta methods 11

4.1 Order conditions for Runge-Kutta methods. 13

4.2 Error control and stepsize selection. 18

4.3 Dense output . 22

1

4.4 Collocation methods. 22

5 Stiff equations 24

5.1 Linear stability. 27

5.2 Nonlinear stability . 30

5.3 Order reduction . 30

6 Linear multistep methods 34

6.1 Consistency and order. 35

6.2 Linear difference equations . 36

6.3 Zero-stability and convergence . 38

6.4 Adams-Bashforth-Moulton methods . 39

6.5 Predictor-corrector methods . 40

7 Differential-algebraic equations 42

7.1 DAE theory . 43

7.2 Runge–Kutta methods for DAEs . 45

7.2.1 Semi-explicit index 1 problems . 45

7.2.2 Semi-explicit index 2 problems . 46

7.3 Backward differentiation formulas (BDF) . 46

2

1 Eulers method.

Let us start this introduction to the numerical solution of ordinary differential equations
(ODEs) by something familiar. Given a scalar (one equation only) ODE

y′ = f(t, y), t0 ≤ t ≤ tend, y(t0) = y0, (1)

in which the function f , the integration interval [t0,tend] and the initial value y0 is assumed
to be given. The solution of this initial value problem (IVP) is a function y(t) on the interval
[t0, tend].

Example 1.1. The ODE/IVP

y′ = −2ty, 0 ≤ t ≤ 1, y(0) = 1.0

has as solution the function
y(t) = e−t

2
.

But in many practical situations, it is not possible to express the solution y(t) in closed form,
even if a solution exist. In these cases, a numerical algorithm can give an approximation
to the exact solution. Let us start with Eulers method, which should be known from some
calculus classes. Divide the interval [t0, tend] into Nstep equal subintervals, each of size h =
(tend − t0)/Nstep, and let tn = t0 + nh. Euler’s method can be derived by several means. One
possibility is to use the first few terms of the Taylor expansion of the exact solution, which is
given by

y(t0 + h) = y(t0) + hy′(t0) +
1

2
h2y′′(t0) + · · ·+ 1

p!
hpy(p)(t0) +

1

(p+ 1)!
hp+1y(p+1)(ξ), (2)

where ξ is somewhere between t0 and tend. The integer p ≥ 1 is a number of our own choice,
but we have to require y to be sufficiently differentiable, in this case that y(p+1) exist and is
continuous. If h is small, we may assume that the solution will be completely dominated by
the first two terms, thus

y(t0 + h) ≈ y(t0) + hy′(t0) = y0 + hf(t0, y0),

and we call this approximate solution y1. Starting from the point t1 = t0 + h and y1 we can
repeat the process. We have now developed Euler’s method, given by

yn+1 = yn + hf(tn, yn), n = 0, 1, · · · , Nstep − 1,

resulting in approximations yn ≈ y(tn).

Example 1.2. Eulers method with h = 0.1 applied to the ODE of Example 1.1 gives

3

tn yn
0.0 1.0000
0.1 1.0000
0.2 0.9800
0.3 0.9408
0.4 0.8844
0.5 0.8136
0.6 0.7322
0.7 0.6444
0.8 0.5542
0.9 0.4655
1.0 0.3817

.

In this case we know the exact solution, y(1.0) = e−1.02 = 0.3679 and the error at the endpoint
is e10 = y(1.0)− y10 = −1.38 · 10−2. If we repeat this experiment (write a MATLAB program
to do so) with different stepsizes, and measure the error at the end of the interval, we get

h eNstep = y(1.0)− yNstep
0.1 −1.38 · 10−2

0.05 −6.50 · 10−3

0.025 −3.16 · 10−3

0.0125 −1.56 · 10−3

.

From this example, it might look like the error at the endpoint eNstep ∼ h, where h =
(tend− t0)/Nstep. But is this true for all problems, and if yes, can we prove it? To do so, we
need to see what kind of errors we have and how they behave. This is illustrated in Figure 1.
For each step an error is made, and these errors are then propagated til the next steps and
accumulate at the endpoint.

Definition 1.1. The local truncation error dn+1 is the error done in one step when starting at
the exact solution y(tn). The global error is the difference between the exact and the numerical
solution at point tn, thus en = y(tn)− yn.

The local truncation error of Euler’s method is

dn+1 = y(tn + h)− y(tn)− hf(tn, y(tn)) =
1

2
h2y′′(ξ),

where ξ ∈ (tn, tn+1). This is given from the Taylor-expansion of y(tn + h) around tn with
p = 1. To see how the global error propagates from one step to the next, the trick is: We have

y(tn + h) = y(tn) + hf(tn, y(tn)) + dn+1,

yn+1 = yn + hf (tn, yn) .

Take the difference of these two, and get

en+1 = en + h (f (tn, y(tn))− f (tn, yn)) + dn+1 = (1 + hfy(tn, v))en + dn+1, (3)

4

t
n

t
n+1t

0
t
end

y
0

y
n

y
n+1

y
Nstep

y(t
n
)

y(t
n+1

) y(t
end

)

d
n+1

e
n

Figure 1: Lady Windermere’s Fan

where v is somewhere between y(tn) and yn. We have here used the mean value theorem
(Theorem 1.8 in Burden and Faires) for f (tn, y(tn))−f (tn, yn). This is about as far as we get
with exact calculations, since ξ in dn+1 as well as v in fy are unknown, and will also change
from one step to the next. So we will look for an upper bound of the global error. We will
first assume upper bounds for our unknown, that is, we assume there exist positive constants
D and L so that

1

2

∣∣y′′∣∣ ≤ D for all t ∈ (t0, tend) and |fy| ≤ L for all t ∈ [t0, tend] and for all y.

Taken the absolute value of both sides of (3) and using the triangle inequality gives

|en+1| ≤ (1 + hL) |en|+Dh2.

Since e0 = 0 (there is no error at the initial point) we can use this formula recursively to get
an upper bound for the error at the endpoint:

|e1| ≤ Dh2,

|e2| ≤ (1 + hL)Dh2 +Dh2

...∣∣eNstep∣∣ ≤ Nstep−1∑
i=0

(1 + hL)iDh2 =
(1 + hL)Nstep − 1

1 + hL− 1
Dh2.

5

Using the fact that 1+hL ≤ ehL (why?) and h·Nstep = tend−t0 we finally reach the conclusion

∣∣eNstep∣∣ ≤ (ehL)Nstep − 1

L
Dh =

eL(tend−t0) − 1

L
D · h = C · h.

The constant C =
(
ehL − 1

)
D/L depends only on the problem, and we have proved conver-

gence ∣∣y(tend)− yNstep
∣∣→ 0 when h→ 0 (or Nstep →∞).

2 Some background on ODEs.

In this section some useful notation on ordinary differential equations will be presented. We
will also give existence and uniqueness results, but without proofs.

A system of m first order ordinary differential equation is given by

y′ = f(t, y) (4)

or, written out, as

y′1 = f1(t, y1, · · · , ym),

y′2 = f2(t, y1, · · · , ym),

...
y′m = fm(t, y1, · · · , ym).

This is an initial value problem (IVP) if the solution is given at some point t0, thus

y1(t0) = y1,0, y(t0) = y2,0, · · · ym(t0) = ym,0.

Example 2.1. The following equation is an example of the Lotka-Volterra equation:

y′1 = y1 − y1y2,

y′2 = y1y2 − 2y2.

An ODE is called autonomous if f is not a function of t, but only of y. The Lotka-Volterra
equation is an example of an autonomous ODE. A nonautonomous system can be made
autonomous by a simple trick, just add the equation

y′m+1 = 1, ym+1(t0) = t0,

and replace t with ym+1. Also higher order ODE/IVPs

u(m) = f(t, u, u′, · · · , u(m−1)), u(t0) = u0, u
′(t0) = u′0, · · · , u(m−1)(t0) = u

(m−1)
0 ,

6

where u(m) = dmu/dtm, can be written as a system of first order equations, again by a simple
trick: Let

y1 = u, y2 = u′, · · · ym = u(m−1),

and we get the system

y′1 = y2, y1(t0) = u0,

y′2 = y3, y2(t0) = u′0,

...
...

y′m−1 = ym, ym−1(t0) = u
(m−2)
0 ,

y′m = f(t, y1, y2, · · · , ym), ym(t0) = u
(m−1)
0 .

Example 2.2. Van der Pol’s equation is given by

u′′ + µ(u2 − 1)u′ + u = 0.

Using y1 = u and y2 = u′ this equation can be rewritten as

y′1 = y2,

y′2 = µ(1− y2
1)y2 − y1.

This problem was first introduced by Van der Pol in 1926 in the study of an electronic oscillator.

In the rest of this course, we will assume that the following existence and uniqueness results
holds:

Definition 2.1. A function f : R × Rm → Rm satisfies the Lipschitz condition with respect
to y on a domain (a, b)×D where D ⊂ Rm if there exist a constant L so that

‖f(t, y)− f(t, ỹ)‖ ≤ L‖y − ỹ‖, for all t ∈ (a, b), y, ỹ ∈ D.

The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if ∂fi/∂yj , i, j =
1, · · · ,m are continuous and bounded on the domain and D is open and convex.

Theorem 2.2. Consider the initial value problem

y′ = f(t, y), y(t0) = y0. (5)

If

1. f(t, y) is continuous in (a, b)×D,

2. f(t, y) satisfies the Lipschitz condition with respect to y in (a, b)×D.

with given initial values t0 ∈ (a, b) and y0 ∈ D, then (5) has one and only one solution in
(a, b)×D.

7

Before concluding this section, we will include another definition, which is useful when we
later will discuss stability:

Definition 2.3. The function f : Rm → Rm satisfy a one-sided Lipschitz condition with
constant µ if

〈f(y)− f(ỹ), y − ỹ〉 ≤ µ‖y − ỹ‖22.

And the following theorem holds:

Theorem 2.4. If f(t, y) satisfies the one-sided Lipschitz condition with constant µ, and y(t),
ỹ(t) both are solutions of y′ = f(t, y), then, for all t ≥ t0

‖y(t)− ỹ(t)‖2 ≤ eµ(t−t0)‖y(t0)− ỹ(t0)‖2.

Proof. We have
d

dt
‖y(t)− ỹ(t)‖22 = 2〈f(y(t))− f(ỹ(t)), y(t)− ỹ(t)〉

≤ 2µ‖y(t)− ỹ(t)‖22
Multiplying by e−2µ(t−t0) gives us

d

dt

(
e−2µ(t−t0)‖y(t)− ỹ(t)‖22

)
= e−2µ(t−t0)

(
d

dt
‖y(t)− ỹ(t)‖22 − 2µ‖y(t)− ỹ(t)‖22

)
≤ 0,

so e−µ(t−t0)‖y(t)− ỹ(t)‖2 is a nondecreasing function, which proves the theorem.

Flow of the system

We will sometimes use the term flow of a system, ϕt, defined as

ϕt(y0) = ϕt ◦ y0 = y(t) if y(0) = y0.

where y(t) is the solution of the ODE. Thus you may think about φt as all possible solutions
of the ODE.

3 Numerical solution of ODEs.

In this section we develop some simple methods for the solution of initial value problems. In
both cases, let us assume that we somehow have found solutions yl ≈ y(tl), for l = 0, 1, · · · , n,
and we want to find an approximation yn+1 ≈ y(tn+1) where tn+1 = tn + h, where h is the
stepsize. Basically, there are two different classes of methods in practical use.

1. One-step methods. Only yn is used to find the approximation yn+1. One-step methods
usually require more than one function evaluation pr. step. They can all be put in a
general abstract form

yn+1 = yn + hΦ(tn, yn;h).

2. Linear multistep methods: yn+1 is approximated from yn−k+1, · · · , yn.

8

3.1 Some examples of one-step methods.

Assume that tn, yn is known. The exact solution y(tn+1) with tn+1 = tn + h of (4) passing
through this point is given by

y(tn + h) = yn +

∫ tn+1

tn

y′(τ)dτ = yn +

∫ tn+1

tn

f(τ, y(τ))dτ. (6)

The idea is to find approximations to the last integral. The simplest idea is to use f(τ, y(τ)) ≈
f(tn, yn), in which case we get the Euler method again:

yn+1 = yn + hf(tn, yn).

The integral can also be approximated by the trapezoidal rule∫ tn+1

tn

f(τ, y(τ)) =
h

2
(f(tn, yn) + f(tn+1, y(tn+1)).

By replacing the unknown solution y(tn+1) by yn+1 we get the trapezoidal method

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) .

Here yn+1 is available by solving a (usually) nonlinear system of equations. Such methods are
called implicit. To avoid this extra difficulty, we could replace yn+1 on the right hand side by
the approximation from Eulers method, thus

ỹn+1 = yn + hf(tn, yn);

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, ỹn+1)) .

This method is called the improved Euler method. Similarly, we could have used the midpoint
rule for the integral, ∫ tn+1

tn

f(τ, y(τ)) =

(
f(tn +

h

2
, y(tn +

h

2
)

)
,

and replaced y(tn + h
2) by one half Euler step. The result is the modified Euler method :

ỹn+ 1
2

= yn +
h

2
f(tn, yn),

yn+1 = yn + hf(tn +
h

2
, ỹn+ 1

2
).

Do we gain anything by constructing these methods? Let us solve the problem from Example
1.1 using improved/modified Euler with h = 0.1. For each step, also the global error en =

9

y(tn)− yn is computed. For comparison, also the result for the Euler method is included.

Euler improved Euler modified Euler
tn yn en yn en yn en
0.0 1.000000 0 1.000000 0 1.000000 0
0.1 1.000000 −9.95 · 10−3 0.990000 4.98 · 10−5 0.990000 4.98 · 10−5

0.2 0.980000 −1.92 · 10−2 0.960696 9.34 · 10−5 0.960597 1.92 · 10−4

0.3 0.940800 −2.69 · 10−2 0.913814 1.17 · 10−4 0.913528 4.03 · 10−4

0.4 0.884352 −3.22 · 10−2 0.852040 1.04 · 10−4 0.851499 6.45 · 10−4

0.5 0.813604 −3.48 · 10−2 0.778765 3.60 · 10−5 0.777930 8.71 · 10−4

0.6 0.732243 −3.46 · 10−2 0.697773 −9.69 · 10−5 0.696636 1.04 · 10−3

0.7 0.644374 −3.17 · 10−2 0.612924 −2.98 · 10−4 0.611507 1.12 · 10−3

0.8 0.554162 −2.69 · 10−2 0.527850 −5.58 · 10−4 0.526202 1.09 · 10−3

0.9 0.465496 −2.06 · 10−2 0.445717 −8.59 · 10−4 0.443904 9.54 · 10−4

1.0 0.381707 −1.38 · 10−2 0.369053 −1.17 · 10−3 0.367153 7.27 · 10−4

As we can see, there is a significant improvement in accuracy, compared with the Euler method.

3.2 Some examples of linear multistep methods.

Most of the classical linear multistep methods are based on some kind of interpolation. In the
followin, we use fi = f(ti, yi).

The Adams methods

Write the ODE (4) in integral form

y(tn + h) = y(tn) +

∫ tn+h

tn

f(τ, y(τ))dτ.

Let p(t) be the polynomial interpolating (ti, f(ti, yi)) for i = n− k + 1, . . . , n, and let

yn+1 = yn +

∫ tn+h

tn

p(τ)dτ.

Methods constructed this way is called k − step Adams-Bashforth methods. Examples:

k = 1 : yn+1 = yn + hfn

k = 2 : yn+1 = yn +
h

2
(3fn − fn−1)

These methods are of order k.

10

Implicit Adams methods, or Adams-Moulton is constructed similarly, but the point tn+1, fn+1

is included in the interpolation polynomial. Examples:

k = 0 : yn+1 = yn + hfn+1

k = 1 : yn+1 = yn +
h

2
(fn+1 + fn)

k = 2 : yn+1 = yn +
h

12
(5fn+1 + 8fn − fn−1)

These are of order k + 1.

Backward differentiation formulas (BDF)

Let p(t) be the polynomial interpolating (ti, yi), i = n−k+1, . . . , n, n+1. The BDF methods
are then simply

p′(tn+1) = fn+1

Examples:

k = 1 : yn+1 − yn = hfn+1

k = 2 :
1

2
(3yn+1 − 2yn + yn−1) = hfn+1

These methods are of order k, and have good stability properties. The MATLAB solver
ODE15s is based on these formulas.

4 Runge-Kutta methods

The Euler method, as well as the improved and modified Euler methods are all examples on
explicit Runge-Kutta methods (ERK). Such schemes are given by

k1 = f(tn, yn), (7)
k2 = f(tn + c2h, yn + ha21k1),

k3 = f
(
tn + c3h, yn + h(a31k1 + a32k2)

)
,

...

ks = f
(
tn + csh, yn + h

s−1∑
j=1

asjkj
)
,

yn+1 = yn + h
s∑
i=1

biki,

where ci, aij and bi are coefficients defining the method. We always require ci =
∑s

j=1 aij .
Here, s is the number of stages, or the number of function evaluations needed for each step.

11

The vectors ki are called stage derivatives. The improved Euler method is then a two-stage
RK-method, written as

k1 = f(tn, yn),

k2 = f(tn + h, yn + hk1),

yn+1 = yn +
h

2
(k1 + k2).

Also implicit methods, like the trapezoidal rule,

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn + h, yn+1)

)
can be written in a similar form,

k1 = f(tn, yn),

k2 = f
(
tn + h, yn +

h

2
(k1 + k2)

)
,

yn+1 = yn +
h

2
(k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to
be solved to find k2.

Definition 4.1. An s-stage Runge-Kutta method is given by

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj
)
, i = 1, 2, · · · , s,

yn+1 = yn + h

s∑
i=1

biki.

The method is defined by its coefficients, which is given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass
b1 b2 · · · bs

or in short
c A

bT
(8)

and we will always assume that

ci =

s∑
j=1

aij , i = 1, · · · , s or in short c = A1.

The method is explicit if aij = 0 whenever j ≥ i, otherwise implicit.

Example 4.1. The Butcher-tableaux for the methods presented so far are

0 0

1

0 0 0

1 1 0

1
2

1
2

0 0 0

1
2

1
2 0

0 1

0 0 0

1 1
2

1
2

1
2

1
2

Euler improved Euler modified Euler trapezoidal rule

12

When the method is explicit, the zeros on and above the diagonal is usually ignored. We
conclude this section by presenting the maybe most popular among the RK-methods over
times, The 4th order Runge-Kutta method (Kutta – 1901):

k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2k1)

k3 = f(tn + h
2 , yn + h

2k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

or

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (9)

4.1 Order conditions for Runge-Kutta methods.

Theorem 4.2. Let

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend

be solved by a one-step method

yn+1 = yn + hΦ(tn, yn;h), (10)

with stepsize h = (tend − t0)/Nstep. If

1. the increment function Φ is Lipschitz in y, and

2. the local truncation error dn+1 = O(hp+1) ,

then the method is of order p, that is, the global error at tend satisfies

eNstep = y(tend)− yNstep = O(hp).

The proof is left as an exercise.

A RK method is a one-step method with increment function Φ(tn, yn;h) =
∑s

i=1 biki. It is
possible to show that Φ is Lipschitz in y whenever f is Lipschitz and h ≤ hmax, where hmax is
some predefined maximal stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hp+1) if the two series matches for all terms corresponding to
hq with q ≤ p. In principle, this is trivial. In practise, it becomes extremely tedious (give it
a try). Fortunately, it is possible to express the two series very elegant by the use of B-series
and rooted trees.

13

B–series and rooted trees

B–series in different forms, and under different names, is essential the main tool for construct-
ing order theory for time-dependent problems, like ODEs, DAEs and SDEs. In this note, with
a B–series we mean a formal series of the form

B(ϕ, x0;h) = x0 +
∑
τ∈T̄

α(τ) · ϕ(τ)(h) · F (τ)(x0). (11)

Here, T is a set of rooted trees, T̄ = T\∅ where ∅ refer to the initial value term, F (τ)(x0) the
elementary differentials, ϕ(τ)(h) some integral, and α(τ) is a symmetry factor. The idea is to
express the solutions of the exact and the numerical solution after one step as B–series. For
instance, consider the automomous ODE y′ = f(y), y(t0) = y0, and let us solve this by the
Euler method. Thus we have

B(e, y0;h) = y(t0 + h) = y(t0) + hf(y0) +
1

2
h2f ′f + · · ·

B(φ, y0;h) = y1 = y(t0) + hf(y0).

So, if the these solution can be expressed as B–series, which we still have to prove, the first
terms will be

τ α e φ F

1 h h f

1 1
2h

2 0 f ′f

.

But at the moment, we do not know how the rest of the terms looks like.

Before a more formal derivation of the series, let present a few definitions and results:

Definition 4.3. Let y = [y1, y2, · · · , ym]T ∈ Rm and f(y) = [f1(y), f2(y), · · · , fm(y)]T ∈ Rm.
The κ′th Frechet derivative of f , denoted by f (κ)(y) is a κ-linear operator Rm×Rm×· · ·×Rm
(κ times) → Rm. Evaluation of component i of this operator working on the m operands
v1, v2, · · · vκ ∈ Rm is given by[

f (κ)(y)(v1, v2, · · · , vκ)
]
i

=
m∑
j1=1

m∑
j2=1

· · ·
m∑

jκ=1

∂κfi(y)

∂yj1∂yj2 · · · ∂yjκ
v1,j1v2,j2 · · · vκ,jκ

where vl = [vl,1, vl,2, · · · vl,m] ∈ Rm for l = 1, 2, · · · , κ.

Note that the κ’th Frechet derivative is independent of permutations of its operands, thus e.g.
f ′′′(y)(v1, v2, v3) = f ′′′(y)(v3, v1, v2).

The multivariable Taylor expansion is, for y, v ∈ Rm:

f(y + v) = f(y) +
∞∑
κ=1

1

κ!
f (κ)(y)(v, v, . . . , v) =

∞∑
κ=1

1

κ!
f (κ)(y)(vκ), (12)

the expression to the right is only a convenient way to write the expression in the middle.

14

Finally, the multinomial theorem states:

(v1 + v2 + . . .+ vq)
κ =

∑
r1+···+rq=κ

κ!

r1! · · · rq!
vr11 · · · v

rq
q

A similar argument applied to the Frechet derivative gives

f (κ)(y)(a1v1 + a2v2 + . . .+ aqvq)
κ =

∑
r1+···+rq=κ

κ!

r1! · · · rq!
·
κ∏
k=1

ak · f (κ)(y)(vr11 , . . . , v
rq
q) (13)

where αk ∈ R and vk ∈ Rm.

A list of trees, denoted by {τ1, τ2, · · · , τκ}, τi ∈ T , i = 1, · · · , κ is an ordered set of trees,
where each tree might appear more than once. If τ1, τ2 ∈ T then {τ1, τ2, τ1} and {τ2, τ1, τ1}
are two different lists. If a tree appear k times in the list, the tree has multiplicity k. A
multiset of trees, denoted by (τ1, τ2, · · · , τκ) is a set of trees where multiplicity is allowed and
order does not matter. So (τ1, τ2, τ1) = (τ2, τ1, τ1). A tree with multiplicity k will sometimes
be denoted by τk, so (τ1, τ2, τ1) = (τ2

1 , τ2). The set of all possible lists of trees is denoted Ũ ,
and the set of all possible multisets is denoted U :

Ũ = {{τ1, τ2, · · · , τκ} : τi ∈ T, i = 1, · · · , κ, κ = 0, 1, 2, · · · },
U = {(τ1, τ2, · · · , τκ) : τi ∈ T, i = 1, · · · , κ, κ = 0, 1, 2, · · · }.

In the lemma below, Uf is the set of trees formed by taking a multiset from U and include a
root f .

Lemma 4.1. If X(h) = B(φ, x0;h) is some B-series and f ∈ C∞(Rm,Rm) then f(X(h)) can
be written as a formal series of the form

f(X(h)) =
∑
u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0) (14)

where Uf is a set of trees derived from T , by

a) [∅]f ∈ Uf , and if τ1, τ2, · · · , τκ ∈ T then [τ1, τ2, · · · , τκ]f ∈ Uf .

b) G([∅]f)(x0) = f(x0) and
G(u = [τ1, · · · , τκ]f)(x0) = f (κ)(x0)

(
F (τ1)(x0), · · · , F (τκ)(x0)

)
.

c) β([∅]f) = 1 and β(u = [τ1, · · · , τκ]f) =
1

r1!r2! · · · rq!

κ∏
k=1

α(τk),

where r1, r2, · · · , rq count equal trees among τ1, τ2, · · · , τκ.

d) ψφ([∅]f)(h) ≡ 1 and ψφ(u = [τ1, · · · , τκ]f)(h) =
∏κ
k=1 φ(τk)(h).

15

Proof. Writing X(h) as a B-series, we have

f(X(h)) = f

x0 +
∑
τ∈T̄

α(τ) · φ(τ)(h) · F (τ)(x0)


(12)
=

∞∑
κ=0

1

κ!
f (κ)(x0)

∑
τ∈T̄

α(τ) · φ(τ)(h) · F (τ)(x0)

κ

(13)
= f(x0) +

∞∑
κ=1

1

κ!

∑
(τ1,τ2,···τκ)∈U

κ!

r1!r2! · · · rq!

·

(
κ∏
k=1

α(τk) · φ(τk)(h)

)
f (κ)(x0)

(
F (τ1)(x0), · · · , F (τκ)(x0)

)
.

The number above the equal sign refer to the equation used. The last sum is taken over all
possible unordered combinations of κ trees in T . For each set of trees τ1, τ2, · · · , τκ ∈ T we
assign a u = [τ1, τ2, · · · , τκ]f ∈ Uf . The theorem is now proved by comparing term by term
with (14).

To find the B–series of the exact solution, write the ODE in integral form:

y(t0 + h) = y0 +

∫ h

0
f(y(t0 + s))ds. (15)

Assume that the exact solution can be written as a B-series

y(t0 + h) = B(e, y0;h). (16)

Plug this into (15), apply Theorem 4.1 to get

y0 +
∑
τ∈T̄

α(τ) · e(τ)(h) · F (τ)(y0) = y0 +
∑
u∈Uf

β(u) ·
∫ h

0
ψe(u)(s)ds ·G(u)(y0).

For each term on the left hand side, there has to be a corresponding term on the right. Or for
each τ = [τ1, . . . , τκ] ∈ T there is a corresponding u = [τ1, . . . , τκ]f ∈ Uf , and α(τ) = β(u),
F (τ)(y0) = G(u)(y0) and finally e(τ)(h) =

∫ h
0 ψe(s)ds.

This gives us the following theorem:

Theorem 4.4. The exact solution of (4) can be written as a formal series of the form (16)
with

i) ∅ ∈ T , • = [∅] ∈ T , and if τ1, . . . , τκ ∈ T then τ = [τ1, . . . , τκ] ∈ T .
ii) F (∅)(y0) = y0, F (•) = f(y0), and F (τ)(y0) = f (κ)(y0)

(
F (τ1)(y0), . . . , F (τκ)(y0)

)
.

iii) α(∅) = 1, α(•) = 1 and α(τ) = 1
r1!r2!···rq !

∏κ
k=1 α(τk), where r1, . . . , rq counts equal trees

among the subtrees τ1, . . . , τκ.
iv) e(∅)(h) = 1, e(•)(h) = h and e(τ)(h) =

∫ h
0

∏κ
k=1 e(τk)(s)ds.

16

Notice that e(τ)(h) = 1
γ(τ)h

ρ(τ), where γ(τ) is an integer and ρ(τ) is the number of nodes.
This is called the order of the tree τ .

To find the B–series of the numerical solution, write one stop of the RK–method in the form

Yi = y0 + h
s∑
j=1

aijf(Yj), i = 1, . . . , s (17)

y1 = y0 + h

s∑
i=1

bif(Yj). (18)

and assume that both the stage values Yi and the numerical solutions can be written as

Yi = B(φi, y0;h), i = 1, . . . , s, and y1 = B(φ, y0;h).

It is straighforward to see that φi(∅)(h) = φ(∅)(h) = 1 and

φi() =

s∑
j=1

aijh = cih, φ()(h) =

s∑
i=1

bih.

For a general tree τ ∈ T , insert the B–series for Yi and y1 into (18), apply Lemma 4.1 and
compare equal terms. This results in the following reccurence formula for the weight functions
φi(τ) and φ(τ) for a given τ = [τ1, . . . , τκ]:

φi(τ)(h) =
s∑
j=1

aij

κ∏
k=1

φj(τk)(h), φ(τ)(h) =

s∑
i=1

bi

κ∏
k=1

φi(τk)(h) (19)

Notice again that φ(τ)(h) = φ̂(τ) · hρ(τ), where φ̂(τ) is a constant depending of the method
coefficients. Similar, we can write φi(τ)(h) = φ̂i(τ) · hρ(τ).

Comparing the series for the exact and the numerical solutions and applying Theorem 4.2
gives the following fundamental theorem:

Theorem 4.5. A Runge-Kutta method is of order p if and only if

φ̂(τ) =
1

γ(τ)
, ∀τ ∈ T, ρ(τ) ≤ p.

17

All trees up to and including order 4 and their corresponding terms are listed below:

τ ρ(τ) φ̂(τ) = 1/γ(τ)

1
∑
bi = 1

2
∑
bici = 1/2

3
∑
bic

2
i = 1/3∑

biaijcj = 1/6

4
∑
bic

3
i = 1/4∑

biciaijcj = 1/8∑
biaijc

2
j = 1/12

∑
biaijajkck = 1/24

4.2 Error control and stepsize selection.

A user of some numerical black box software will usually require one thing: The accuracy of
the numerical solution should be within some user specified tolerance. To accomplish this we
have to measure the error, and if the error is too large, it has to be reduced. For ordinary
differential equations, this means to reduce the stepsize. On the other hand, we would like
our algorithm to be as efficient as possible, that is, to use large stepsizes. This leaves us with
two problems: How to measure the error, and how to get the right balance between accuracy
and efficiency.

Local error estimate. As demonstrated in Figure 1, the global error y(tn)−yn comes from
two sources: the local truncation error and the propagation of errors produced in preceding
steps. This makes it difficult (but not impossible) to measure the global error. Fortunately
it is surprisingly easy to measure the local error, ln+1, the error produced in one step when
starting at (tn, yn), see Figure 2. Let y(t; tn, yn) be the exact solution of the ODE through
the point tn, yn. For a method of order p we get

ln+1 = y(tn + h; tn, yn)− yn+1 = Ψ(tn, yn)hp+1 +O(hp+2),

where O(hp+2) refer to higher order terms 1 The term Ψ(tn, yn)hp+1 is called the principal
error term, and we assume that this term is the dominating part of the error. This assumption

1Strictly speaking, the Landau-symbol O is defined by

f(x) = O(g(x)) for x→ x0 if limx→x0
‖f(x)‖
‖g(x)‖ < K <∞

for some unspecified constant K. Thus f(h) = O(hq) means that ‖f(h)‖ ≤ Khq when h→ 0, and refer to the
remainder terms of a truncated series.

18

t
n

t
n+1

t
0

l
n+1

d
n+1

y
n+1

y
n

y(t
n
)

y(t
n+1

)

Figure 2: Lady Windermere’s Fan

is true if the stepsize h is sufficiently small. Taking a step from the same point tn, yn with a
method of order p̂ = p+ 1 gives a solution ŷn+1 with a local error satisfying

y(tn + h; tn, yn)− ŷn+1 = O(hp+2).

The local error estimate is given by

len+1 = ŷn+1 − yn+1 = Ψ(tn, yn)hp+1 +O(h)p+2 ≈ ln+1.

Embedded Runge-Kutta pair Given a Runge-Kutta method of order p. To be able to
measure the local error, we need a method of order p + 1 (or higher). But we do not want
to spend more work (in terms of f -evaluations) than necessary. The solution is embedded

19

Runge-Kutta pairs, which, for explicit methods are given by

0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1

b̂1 b̂2 · · · b̂s−1 b̂s

The method given by the bi’s is of order p, the error estimating method given by the b̂i’s is
of order p + 1. (Sometimes it is the other way round. The important thing is to have two
methods of different order.) The local error estimate of yn+1 is then given by

len+1 = ŷn+1 − yn+1 = h

s∑
i=1

(b̂i − bi)ki.

Example 4.2. A combination of the Euler method and improved Euler will result in the
following pair

0

1 1

1

1
2

1
2

so that

k1 = f(tn, yn), k2 = f(tn + h, yn + hk1), yn+1 = yn + hk1, ln+1 ≈ len+1 =
h

2
(−k1 + k2).

Example 4.3. Assume that you have decided to use improved Euler, which is of order 2, as
your advancing method, and you would like to find an error estimating method of order 3.
There are no 2-stage order 3 ERKs, so you have to add one stage to your method. This gives
a method like

0

1 1

c3 a31 a32

1
2

1
2

b̂1 b̂2 b̂3

where we require c3 = a31 + a32, which give us five free parameters. These have to satisfy all
four order condition for an order 3 method. Using c3 as a free parameter, we get the following
class of 3rd order methods:

b1 =
3c3 − 1

6c3
, b2 =

2− 3c3

6(1− c3)
, b3 =

1

6c3(1− c3)
, a31 = c2

3, a31 = c3 − c2
3.

20

It is also possible to use the highest order method to advance the solution. In this case, we
still measure the local error estimate of the lowest order order solution, but we get a more
accurate numerical solution for free. This idea is called local extrapolation.

MATLAB has two integrators based on explicit Runge-Kutta schemes, ODE23 which is based
on an order 3/2 pair by Bogacki and Shampine, (a 3th order advancing and a 2nd order error
estimating method), and ODE45 based on an order 5/4 pair by Dormand and Prince. Both
use local extrapolation.

Stepsize control Let the user specify a tolerance Tol, and a norm ‖ · ‖ in which the error
is measured. Let us start with tn, yn, and do one step forward in time with a stepsize hn,
giving yn+1 and len+1. If ‖len+1‖ ≤ Tol the step is accepted, and we proceed till the next
step, maybe with an increased stepsize. If ‖len+1‖ > Tol the step is rejected and we try again
with a smaller stepsize. In both cases, we would like to find a stepsize hnew which gives a local
error estimate smaller than Tol, but at the same time as close to Tol as possible. To find the
right stepsize, we make one assumption: The function Ψ(tn, yn) of the principle error term do
not change much from one step to the next, thus ‖Ψ(tn, yn)‖ ≈ ‖Ψ(tn+1, yn+1)‖ ≈ C. Then

we have: ‖len+1‖ ≈ C · hp+1
n

we want: Tol ≈ C · hp+1
new

We get rid of the unknown C by dividing the two equations with each other, and hnew can be
solved from

‖len+1‖
Tol

≈
(

hn
hnew

)p+1

.

Rejected steps are wasted work, and it should be avoided. Thus we choose the new stepsize
somewhat conservative. The new stepsize is computed by

hnew = P ·
(

Tol

‖len+1‖

) 1
p+1

hn. (20)

where P is a pessimist factor, usually chosen somewhere in the interval [0.5,0.95]. In the
discussion so far we have used the requirement ‖len+1‖ ≤ Tol, that is error pr. step (EPS).
This do not take into account the fact that the smaller the step is, the more steps you take,
and the local errors from each step adds up. From this point of view, it would make sense
to rather use the requirement ‖le‖n+1 ≤ Tol · hn, that is error pr. unit step (EPUS). The
stepsize selection is then given by

hnew = P ·
(

Tol

‖len+1‖

) 1
p

hn. (21)

Careful analysis has proved that the local extrapolation together with EPS gives proportion-
ality between the global error and the tolerance. The same is true for the use of the lower
order method to advance the solution in combination with EPUS.

21

4.3 Dense output

Given a RK–method with coefficients (c, A, b). To find approximations to solutions between
the steps, that is, at some point t = tn+θhn, θ ∈ (0, 1), we search for a continuous RK–scheme,
in which

y(tn + θh) ≈ un(θ) = yn +
s∑
i=1

bi(θ)ki.

The coefficients bi(θ) are now polynomials, and they should be determined so that

u0(θ)− y(x0 + θh) = O(hp
∗+1),

and bi(1) = bi, i = 1, . . . , s. This condition is satisfied if and only if

ρ(τ)
s∑
i=1

bi(θ)Φ̂i(τ) = θρ(τ), ∀τ ∈ T , ρ(τ) ≤ p∗.

4.4 Collocation methods.

We will now see how the idea of orthogonal polynomials can be used to construct high order
Runge-Kutta methods.

Given an ordinary differential equation

y′(t) = f(t, y(t)), y(tn) = yn, t ∈ [tn, tn + h].

Recall also the defintion of a Runge–Kutta method applied to the ODE:

ki = f(tn + cih, yn + h

s∑
j=1

aijkj)

yn+1 = yn + h

s∑
i=1

biki.

(22)

The idea of collocation methods for ODEs is as follows: Assume that s distinct points
c1, c2, . . . , cs ∈ [0, 1] are given. we will then search for a polynomial u ∈ Ps satisfying the
ODE in the points tn + cih, i = 1, · · · , s. These are the collocation conditions, expressed as

u′(tn + cih) = f(tn + cih, u(tn + cih)), i = 1, 2, . . . , s, (23)

The initial condition is u(tn) = yn. When finally u(t) has been found, we will set yn+1 =
u(tn + h).

Let ki be some (so far unknown) approximation to y′(tn + cih), and let u′ = p ∈ Ps−1 be the
interpolation polynomial satisfying p(tn + cih) = ki. For simplicity, introduce the change of
variables t = tn + τh, τ ∈ [0, 1]. Then

p(t) = p(tn + hτ) =
s∑
j=1

kj`j(τ), `j(τ) =
s∏

k=1
k 6=j

τ − ck
cj − ck

.

22

The polynomial u(t) is given by

u(t̃) = u(tn) +

∫ t̃

tn

p(t)dt = yn + h
s∑
j=1

kj

∫ τ̃

0
`j(τ)dτ, t̃ ∈ [tn, tn + h] (thus τ̄ ∈ [0, 1])

The collocation condition becomes

u′(tn + cih) = f

tn + cih, yn + h
s∑
j=1

kj

∫ ci

0
`j(τ)dτ.


and in addition we get

u(tn + h) = yn + h
s∑
j=1

kj

∫ 1

0
`j(τ)dτ.

But u′(tn + cih) = ki, and yn+1 = u(tn + h) so this is exactly the Runge–Kutta method (22)
with coefficients

aij =

∫ ci

0
`j(τ)dτ, i, j = 1, . . . , s, bi =

∫ 1

0
`i(τ)dτ, i = 1, . . . , s. (24)

Runge–Kutta methods constructed this way are called collocation methods and they are of
order at least s. But a clever choice of the ci’s will give better results.

Example 4.4. Let P2(x) = x2 − 1/3 be the second order Legendre polynomial. Let c1 and c2

be the zeros of P2(2x− 1) (using a change of variable to transfer the interval [-1,1] to [0,1]),
that is

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
.

The corresponding cardinal functions becomes

`1(τ) = −
√

3

(
τ − 1

2
−
√

3

6

)
, `2(τ) =

√
3

(
τ − 1

2
+

√
3

6

)
.

From (24) we get a Runge–Kutta method with the following Butcher tableau:

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

.

This method has order 4 (check it yourself).

Famous collocation methods can be constructed by choosing ci as the zeros of a polynomial P :

• Gauss-Legendre methods: P (x) =
ds

dxs
xs(xs − 1), order 2s.

• Radau IA: P (x) =
ds−1

dxs−1
(xs(x− 1)s−1).

Radau IIA: P (x) =
ds−1

dxs−1
(xs−1(x− 1)s).

Both of order 2s− 1.

• Lobatto IIIA: P (x) =
ds−2

dxs−2
(xs−1(x− 1)s−1), of order 2s− 2.

23

Simplifying assumptions

These are tools for reducing the number of order conditions, and to make it easier to construct
higher order methods:

B(p) :
s∑
i=1

bic
q−1
i =

1

q
, q = 1, 2, . . . , p (25a)

C(η) :
s∑
j=1

aijc
q−1
j =

cqi
q
, i = 1, . . . , s, q = 1, 2, . . . , η (25b)

D(ζ) :
s∑
i=1

bic
q−1
i aij =

bj
q

(1 + cqj), j = 1, . . . , s q = 1, . . . , ζ (25c)

Theorem 4.6. If B(p), C(η) and D(ζ) are satisfied with p ≤ 2η + 2 and p ≤ η + ζ + 1, then
the method is of order p.

For a proof, see [1, II.7]

The collocation methods mentioned above all satisfy C(s).

5 Stiff equations

Example 5.1. Given the ODE

y′ = −1000y, y(0) = 1.

with exact solution
y(t) = e−1000t.

Thus y(t)→ 0 as t→∞. The Euler method applied to this problem yields

yn+1 = yn − 1000hyn = (1− 1000h)yn.

so that yn = (1− 1000h)n. This gives us two situations:

If |1− 1000h| < 1 then yn → 0 as n→∞.

If |1− 1000h| > 1 then |yn| → ∞ as n→∞

Clearly, the second situation does not make sense at all, as the numerical solution is unstable
even if the exact solution is stable. We have to choose a stepsize h < 0.002 to get a stable
numerical solution for this problem.

To be more general: Consider a linear ODE

y′ = My, y(0) = y0, (26)

24

where M is a constant, m×m matrix. We assume that M is diagonalizable, that is

V −1MV = Λ

where
Λ = diag{λ1, λ2, · · · , λm}, V = [v1, v2, · · · , vm],

where λi, i = 1, · · · ,m are the eigenvalues of M and vi are the corresponding eigenvectors.
By premultiplying (26) with V −1, we get

V −1y′ = V −1MV V −1y, V −1y(t0) = V −1y0

or, using u = V −1y,
u′ = Λu, u(t0) = V −1y0 = u0.

The system is now decoupled, and can be written componentwise as

u′i = λiui, ui(0) = ui,0, λi ∈ C, i = 1, · · · ,m. (27)

We have to accept the possibility of complex eigenvalues, however, asM is a real matrix, then
complex eigenvalues appears in complex conjugate pairs. In the following, we will consider
the situation when

Re(λi) < 0 for i = 1, · · · ,m, thus y(t)→ 0 as t→∞. (28)

Apply the Euler method to (26):

yn+1 = yn + hMyn.

We can do exactly the same linear transformations as above, so the system can be rewritten
as

ui,n+1 = (1 + hλi)ui,n, i = 1, · · · ,m.

For the numerical solution to be stable, we have to require

|1 + hλi| ≤ 1, for all the eigenvalues λi. (29)

(The case |1+hλih| = 1 is included, as this is sufficient to prevent the solution from growing.)

Example 5.2. Given

y′ =

−2 1

998 −999

 y, y(0) =

1

1


with exact solution y1(t) = y2(t) = e−t. The matrix has eigenvalues −1 and −1000. The initial
values are chosen so that the fast decaying mode is missing in the exact solution. This problem
is solved by Eulers method, with two almost equal stepsizes, h = 0.0021 and h = 0.002. The
difference is striking, but completely in correspondence with (29) and the result of Example
5.1.

25

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

s
o
lu

ti
o
n

Euler, h=0.002100

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

s
o
lu

ti
o
n

Euler, h=0.002000

Example 5.2 is a typical example of a stiff equation. The stepsize is restricted by a fast
decaying component.

Example 5.3. Let

M =

−2 −2

1 0

 with eigenvalues λ1,2 = −1± i.

The requirement (29) becomes

|1 + h(−1± i)| ≤ 1 or (1− h)2 + h2 ≤ 1 which is satisfied if and only if 0 ≤ h ≤ 1.

Stiffness occurs in situations with fast decaying solutions (transients) in combination with
slow solutions. If you solve an ODE by an adaptive explicit scheme, and the stepsize becomes
unreasonable small, stiffness is the most likely explanation. If the stepsizes in additions seems
to be independent of your choice of tolerances, then you can be quite sure. The stepsize is
restricted by stability related to the transients, and not by accuracy. The backward Euler
method is one way to overcome this problem:

yn+1 = yn + hf(tn+1, yn+1) (30)

or, applied to the problem of (27)

ui,n+1 = ui,n + hλiui,n+1, ⇒ ui,n+1 =
1

1− hλi
ui,n.

Since |1/(1−hλi)| ≤ 1 whenever Re(λi) ≤ 0 there is no stepsize restriction caused by stability
issues. In fact, ui,n+1 → 0 as Re(hλi) → −∞, so fast transients decay quickly, as they are
supposed to do. But this nice behaviour is not for free: for a nonlinear ODE a nonlinear
system of equations has to be solved for each step. We will return to this topic later.

26

5.1 Linear stability.

Given the linear test equation
y′ = λy, λ ∈ C. (31)

Thus λ = α+ iβ. The solution can be expressed by

y(tn + h) = eαheiβhy(tn).

Clearly, the solution is stable if α ≤ 0, that is λ ∈ C−. For the numerical solution we then
require the stepsize h to be chosen so that

|yn+1| ≤ |yn| wheneverλ ∈ C− (32)

When a RK method is applied (31), we simply get

yn+1 = R(z)yn, z = hλ

where R is a polynomial or a rational function. R is called the stability function of the RK
method. The numerical solution is stable if |R(z)| ≤ 1, otherwise it is unstable. This motivates
the following definition of the region of absolute stability as

D = {z ∈ C : |R(z)| ≤ 1}.

The condition (32) is satisfied for all h > 0 if

C− ⊆ D,

Methods satisfying this condition are called A-stable. The Backward Euler method (30) is an
example of an A-stable method.

Example 5.4. A 2-stage ERK applied to (31) is given by:

k1 = λyn, k2 = λ(yn + ha21λyn), yn+1 = yn + hλ(b1 + b2)yn + (hλ)2b2a21yn

If this method is of order 2, then b1 + b2 = 1 and b2a21 = 1/2, so that

R(z) = 1 + z +
1

2
z2.

The stability function of an s-stage ERKs is a polynomial of degree s. As a consequence, no
ERKs can be A-stable! If the order of the method is s, then

R(z) =

s∑
i=0

zi

i!
.

See Figure 3 for plots of the stability regions. But it has been proved that ERK with p = s
only exist for s ≤ 4. To get an order 5 ERK, 6 stages are needed.

27

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 1 p = s = 2

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 3 p = s = 4

K1 0 1 2 3

K3

K2

K1

1

2

3

K1 0 1 2 3

K3

K2

K1

1

2

3

Backward Euler Trapezoidal rule

Figure 3: Stability regions in C−: The first four are the stability regions for explicit RK
methods of order p = s. The white regions are stable, the grey unstable.

28

Example 5.5. The trapezoidal rule (see section 3.1) applied to (31) gives

yn+1 = yn +
h

2
(λyn + λyn+1) ⇒ R(z) =

1 + z

1− z
.

In this case D = C−, which is perfect.

To find a general expression of the stability function, apply a RK-method to the linear test
problem (31):

ki = λ(yn + h
s∑
j=1

aijkj), i = 1, . . . , s

yn+1 = yn + h
s∑
i=1

bi

or, in matrix form with K = [k1, . . . , ks]
T as

K = λ(yn1 + hAK), yn+1 = yn + hbTK.

Solving the linear system with respect to K, and inserting this into the expression for yn+1

gives
yn+1 = R(z)yn with R(z) = 1 + zbT (I − zA)−1

1. (33)

To summarise:

• For a given λ ∈ C−, choose a stepsize h so that hλ ∈ D.

• If your problem is stiff, use an A-stable method.

• There are no A-stable explicit methods.

The Gauss methods, as well as the Radau methods are A–stable.

The stability constant is defined as

R(∞) = lim
|z|→∞

R(z).

For a method with a invertible coefficient matrix A, the stability constant is

R(∞) = 1− bTA−1
1

Definition 5.1. A RK-method is called L-stable if it is A-stable and in addition R(∞) = 0.

L-stable methods are appropriate for solving problems for which Re(λ) << 0.

Definition 5.2. A method is stiffly accurate if

bi = asi, i = 1, . . . , s.

Notice that in this case cs = 1. For stiffy accurate methods bT is the last row of A, and thus
bTA−1 is the last row of the identity matrix, we can conclude that

R(∞) = 0 for all stiffly accurate methods.

Be aware that this is not sufficient for A-stability.

29

5.2 Nonlinear stability

The next step is to extend the concept of linear stability to nonlinear problems. Consider an
ODE

y′ = f(y)

satisfying the condition
〈f(y)− f(z), y − z〉 ≤ 0 (34)

for all y, z ∈ D ∈ Rm. Here, 〈, 〉 denotes the Euclidean inner product. Let y(t) and z(t) be
two solutions of an ODE. If (34) is satisfied, then

‖y(t)− z(t)‖ ≤ ‖y(t0)− z(t0)‖

assuming the inner product norm. This can be proved by

d

dt
‖y(t)− z(t)‖2 = 2〈f(y(t))− f(z(t)), y(t)− z(t)〉 ≤ 0.

Definition 5.3. A Runge-Kutta method is B-stable if for all h ≥ 0 and for all problems
satisfying (34), the numerical solutions satisfies

‖y1 − z1‖ ≤ ‖y0 − z0‖

Let M be the matrix with elements mij = biaij + bjaji − bibj , for i, j = 1, . . . , s.

Theorem 5.4. If bi ≥ 0 for i = 1, · · · , s and M is positive semidefinite, then the RK–method
is B–stable.

For a proof, see e.g. [2, IV.12]. Runge–Kutta methods satisfying the criterias of Theorem 5.4
are often called algebraically stable.

Example 5.6. The Gauss-methods as well as the Radua methods are all B–stable. So is the
method

5
6

5
6

29
108 − 61

108
5
6

1
6 − 23

183 −33
61

5
6

26
61

324
671

1
11

(35)

The method (35) is called NTI (from Nørsett and Thomsen).

5.3 Order reduction

Stiff problems may also suffer from another phenomena, the observed order can be lower than
the theoretical order of the method. This can be demonstrated by the Prothero and Robinson
example:

y′ = λ(y − g(t)) + g′(t), λ ∈ C−. (36)

30

10
-4

10
-3

10
-2

10
-1

10
0

10
-10

10
-5

10
0

L
o
c
a
l
e
rr

o
r

λ=-1

λ=-1000

10
-4

10
-3

10
-2

10
-1

10
0

h

0

1

2

3

4

L
o
c
a
l
o
rd

e
r

λ=-1

λ=-1000

Figure 4: Local error and local order when the Prothero-Robinson example is solved by NTI.

The exact solution of this problem is

y(t) = eλ(t−t0)(y0 − g(t0)) + g(t)

so the solution consist of a smooth solution g(t) and a (normally fast) transient towards this
solution.

Example 5.7. Let g(t) = sin(t), t0 = 1 and y0 = sin(t0). Do one step by the order 3 NTI
method given in (35), and measure the local error and the local order. We expect to see order
4 (p + 1). The results of the experiment is given in Figure 4. So, for λ = −1, the result is
as expected, but for λ = −1000, the order is only 2 for h > 0.01, then it slowly grows to the
expected order as h becomes smaller.

How can we explain this? One step of a RK-method applied to (36) is given by

ki = λ
(
y0 + h

∑
j

aijkj − g(t0 + cih)
)

+ g′(t0 + cih) i = 1, . . . , s

y1 = y0 +
∑
i

biki.

Let K = [k1, . . . , ks]
T , G = [g(t0 + c1h), . . . , g(t0 + csh)]T and G′ = [g′(t0 + c1h), . . . , g′(t0 +

31

csh)]T

K = λ(1sy0 + hAK −G) +G′

y1 = y0 + hbTK

After some manipulation, we find that this can be written as

y1 = R(z)(y0 − g(t0)) + g(t0) + bT (I − zA)−1
(
z(g(t0)1−G) + hG′

)
(37)

where z = λh and R(z) = 1 + zbT (1− zA)−1
1. The local truncation error is then

d1 = y(t0 + h)− y1 = (ez −R(z))(y0 − g(t0)) + d̂1.

In our experiment, y0 = g(t0), so the first termd did not give any contribution to the error.
So let us look at

d̂1 = g(t0 + h)− g(t0)− bT (I − zA)−1
(
z(g(t0)1−G) + hG′

)
The local order is found by Taylor expansions. The Taylor-expansions of each element of G
and G′ gives

G =

∞∑
q=0

hq

q!
cqg(q)(t0), G′ =

∞∑
q=0

hq

q!
cqg(q+1)(t0) =

∞∑
q=1

hq−1

(q − 1)
cq−1g(q)(t0),

where cq = [cq1, . . . , c
q
s]T . Thus (taking the minus sign into account)

z(G− g(t0)1)− hG′ =
∞∑
q=1

(
zcp − qc(q−1)

)hq
q!
g(q)(t0)

so

d̂1 =

∞∑
q=1

(
1 + bT (I − zA)−1(zcq − qc(q−1)

)
hq

q!
g(q)(t0) =

∞∑
q=1

ψq(z)
hq

q!
g(q)(t0) (38)

The problem now is that we have to deal with a situation where z is large, while h is small.
If this is not the case, the next step would be to find the power series of (I − zA)−1, that is
the Neumann series

(I − zA)−1 =
∞∑
k=0

(zA)−1.

Using this series, z = hλ and collecting equal terms of h will give some of the classical order
conditions. (Why only some of them?). But the Neumann series only converges for ‖zA‖ ≤ 1,
that is for

h ≤ 1

|λ|
1

‖A‖
.

In general, ‖A‖ ∼ 1 (for NTII ‖A‖2 = 1.22). So, for λ = −1, this is h < 1, and we observe
that in this case, the order is about 4, as expected. For λ = −1000, the order is approaching
4 only when h < 0.001, so this seems to be correct.

But how to get a theory for h > 1/|λ|? Write

(I − hA)−1 = −(zA)−1

(
I − (zA)−1

)−1

= −
∞∑
k=1

(zA)−k.

32

The Neumann series used here will converge as long as

‖(zA)−1‖ =
1

|z|
‖A−1‖ < 1 ⇒ h >

1

|λ|
‖A−1‖. (39)

Using (39) in (38) we get

ψq(z) = 1 + bT (I − zA)−1(zcq − qc(q−1)) = 1− bT
∞∑
k=1

(zA)−k(zcq − qc(q−1))

= 1− bTA−1cq −
∞∑
k=1

1

zk
bTA−k−1

(
cq − pAcq−1). (40)

Since c = A1, we can conclude that ψ1 = 0.

Theorem 5.5. If the simplifying assumptions B(p) and C(η) is satisfied, then

ψq = 0, q = 1, . . . ,min(p, η).

The proof is left as an exercise. See (25) for the definition of the simplifying assumptions.
Write them in matrix form before proving the theorem.

Example 5.8. (Example 5.7 continued.) For the NTI method we have

ψ2(z) = 0.2274− 1

z
· 0.7058 +O

(1

z2

)
.

Assuming |z| large, the first term dominates the solution, and the order will be 2. As we
observe in the experiment.

Comment: In such order analysis, we always assume that we can identify one term that
dominates the error. However, as h becomes larger, and/or |z| becomes smaller, the influence
of higher order terms are more significant. This explains the smooth transition from order 2
to the classical order 4.

Finally, for stiffly accurate methods, the first term 1− bTA−1cq = 0 for all q. So, for a method
satisfying C(1) we get

ψ2(z) = −1

z
bTA−2(c2 − 2Ac) +O

(
1

z2

)
.

Since z = λh the order is reduced to 1, but since |z| is large, the error will be small.

Example 5.9. Repeat the experiment from Example 5.7, but now with the Alexander’s method,
given by

α α

1 1− α α

1− α α

, α = 1−
√

2

2

The order of this method is classical order 2. In our experiment, we have used λ = −105. The
result i given in Figure 5.

33

10
-4

10
-3

10
-2

10
-1

10
0

L
o

c
a

l
e

rr
o

r

10
-10

10
-5

10
0

NTI

Alexander

h

10
-4

10
-3

10
-2

10
-1

10
0

L
o

c
a

l
o

rd
e

r

1

1.2

1.4

1.6

1.8

2

2.2

2.4

NTI

Alexander

Figure 5: Local error and local order when the Prothero-Robinson example is solved by NTI
and Alexander’s method. Here, λ = 105.
The severe order reduction is clearly visible, but, on the other hand, Alexander’s method
clearly produces a smaller error.

6 Linear multistep methods

A k-step linear multistep method (LMM) applied to the ODE

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend.

is given by
k∑
l=0

αlyn+l = h
k∑
l=0

βlfn+l, (41)

where αl, βl are the method coefficients, fj = f(tj , yj) and tj = t0 + jh, h = (tend− t0)/Nstep.
Usually we require

αk = 1 and |α0|+ |β0| 6= 0.

To get started with a k-step method, we also need starting values yl ≈ y(tl), l = 0, 1, · · · , k−1.
A method is explicit if βk = 0, otherwise implicit. The leapfrog method

yn+2 − yn = 2hf(tn+1, yn+1) (42)

and the method given by

yn+2 − yn+1 = h

(
3

2
fn+1 −

1

2
fn

)
(43)

34

are both examples of explicit 2-step methods.

Example 6.1. Given the problem

y′ = −2ty, y(0) = 1

with exact solution y(t) = e−t
2. Let h = 0.1, and y1 = e−h

2. This problem is solved by (43),
and the numerical solution and the error is given by

tn yn |en|

0.0 1.000000 0.00

0.1 0.990050 0.00

0.2 0.960348 4.41 · 10−4

0.3 0.912628 1.30 · 10−3

0.4 0.849698 2.45 · 10−3

0.5 0.775113 3.69 · 10−3

0.6 0.692834 4.84 · 10−3

0.7 0.606880 5.75 · 10−3

0.8 0.521005 6.29 · 10−3

0.9 0.438445 6.41 · 10−3

1.0 0.361746 6.13 · 10−3

.

6.1 Consistency and order.

We define the local discretization error τn+k(h) by

hτn+k(h) =
k∑
l=0

(
αly(tn+l)− hβly′(tn+l)

)
. (44)

You can think about the hτn+k as the defect obtained when plugging the exact solution into
the difference equation (41). A method is consistent if τn+k(h) →

h→0
0. The term hτn+k(h) can

be written as a power series in h

hτn+k(h) = C0y(tn) + C1hy
′(tn) + C2h

2y′′(tn) + · · ·+ Cqh
qy(q)(tn) + · · · ,

by expanding y(tn + lh) and y′(tn + lh) into their Taylor series around tn,

y(tn + lh) = y(tn) + (lh)y′(tn) +
1

2
(lh)2y′′(tn) + · · ·+ (lh)q

q!
y(q)(tn) + · · ·

y′(tn + lh) = y′(tn) + (lh)y′′(tn) +
1

2
(lh)2y′′′(tn) + · · ·+ (lh)q−1

q − 1!
y(q)(tn) + · · ·

35

for sufficiently differentiable solutions y(t). Insert this into (44), get the following expressions
for Cq:

C0 =
k∑
l=0

αl, Cq =
1

q!

k∑
l=0

(
lqαl − qlq−1βl

)
, q = 1, 2, · · · . (45)

The method is consistent if C0 = C1 = 0. It is of order p if

C0 = C1 = · · · = Cp = 0, Cp+1 6= 0.

The constant Cp+1 is called the error constant.

Example 6.2. The LMM (43) is defined by

α0 = 0, α1 = −1, α2 = 1, β0 = −1

2
, β1 =

3

2
, β2 = 0,

thus

C0 = α0 + α1 + α2 = 0.

C1 = α1 + 2α2 − (β0 + β1 + β2) = 0

C2 =
1

2!

(
α1 + 22α2 − 2(β1 + 2β2)

)
= 0

C3 =
1

3!

(
α1 + 23α2 − 3(β1 + 22β2)

)
=

5

12
.

The method is consistent and of order 2.

Example 6.3. Is it possible to construct an explicit 2-step method of order 3? There are 4
free coefficients α0, α1, β0, β1, and 4 order conditions to be solved (C0 = C1 = C2 = C3 = 0).
The solution is

α0 = −5, α1 = 4, β0 = 2, β1 = 4.

Test this method on the ODE of Example 2.1. (Replace the method coefficients in lmm.m.) The
result is nothing but disastrous. Taking smaller steps only increase the problem.

To see why, you have to know a bit about how to solve difference equations.

6.2 Linear difference equations

A linear difference equation with constant coefficients is given by

k∑
l=0

αlyn+l = ϕn, n = 0, 1, 2, · · · . (46)

The solution of this equation is a sequence {yn} of numbers (or vectors). Let {ỹn} be the
general solution of the homogeneous problem

k∑
l=0

αlyn+l = 0. (47)

36

Let ψn be one particular solution of (46). The general solution of (46) is then {yn} where
yn = ỹn + ψn. To find a unique solution, we will need the starting values y0, y1, · · · , yk−1.

Let us try ỹn = rn as a solution of the homogeneous equation (47). This is true if

k∑
l=0

αlr
n+l = rn

k∑
l=0

αlr
l = 0.

The polynomial ρ(r) =
∑k

l=0 αlr
l is called the characteristic polynomial, and {rn} is a solu-

tion of (47) if r is a root of ρ(r). The kth degree polynomial ρ(r) has k roots altogether,
r1, r2, · · · , rk, they can be distinct and real, they can be distinct and complex, in which case
they appear in complex conjugate pairs, or they can be multiple. In the latter case, say
r1 = r2 = · · · = rµ we get a set of linear independent solutions {rn1 }, {nrn1 }, · · · , {nµ−1rn1 }.
Altogether we have found k linear independent solutions {ỹn,l} of the homogeneous equation,
and the general solution is given by

yn =
k∑
l=1

κlỹn,l + ψn.

The coefficients κl can be determined from the starting values.

Example 6.4. Given

yn+4 − 6yn+3 + 14yn+2 − 16yn+1 + 8yn = n

y0 = 1, y1 = 2, y2 = 3 y3 = 4.

The characteristic polynomial is given by

ρ(r) = r4 − 6r3 + 14r2 − 16r + 8

with roots r1 = r2 = 2, r3 = 1 + i, r4 = 1 − i. As a particular solution we try ψn = an + b.
Inserted into the difference equation we find this to be a solution if a = 1, b = 2. The general
solution has the form

yn = κ12n + κ2n2n + κ3(1 + i)n + κ4(1− i)n + n+ 2.

From the starting values we find that κ1 = −1, κ2 = 1
4 , κ3 = −i/4 and κ4 = i/4. So, the

solution of the problem is

yn = 2n
(n

4
− 1
)
− i(1 + i)n

4
+
i(1− i)n

4
+ n+ 2

= 2n
(n

4
− 1
)
− 2

n−2
2 sin

(nπ
4

)
+ n+ 2.

Example 6.5. The homogeneous part of the difference equation of Example 6.3 is

ρ(r) = r2 + 4r − 5 = (r − 1)(r + 5).

One root is 5. Thus, one solution component is multiplied by a factor -5 for each step, inde-
pendent of the stepsize. Which explain why this method fails.

37

6.3 Zero-stability and convergence

Let us start with the definition of convergence. As before, we consider the error at tend, using
Nstep steps with constant stepsize h = (tend − t0)/Nstep.

Definition 6.1.

• A linear multistep method (41) is convergent if, for all ODEs satisfying the conditions
of Theorem 2.2 we get

yNstep →
h→0

y(tend), whenever yl →
h→0

y(t0 + lh), l = 0, 1, · · · , k − 1.

• The method is convergent of order p if, for all ODEs with f sufficiently differentiable,
there exists a positive h0 such that for all h < h0

‖y(tend−yNstep‖ ≤ Khp whenever ‖y(t0 + lh)−yl‖ ≤ K0h
p, l = 0, 1, · · · , k−1.

The first characteristic polynomial of an LMM (41) is

ρ(r) =
k∑
l=0

αlr
l,

with roots r1, r2, · · · , rk. From the section on difference equation, it follows that for the
boundedness of the solution yn we require:

1. |ri| ≤ 1, for i = 1, 2, · · · , k.

2. |ri| < 1 if ri is a multiple root.

A method satisfying these two conditions is called zero-stable.

We can now state (without proof) the following important result:

Theorem 6.2. (Dahlquist)

Convergence ⇔ Zero-stability + Consistency.

For a consistent method, C0 =
∑k

l=0 αl = 0 so the characteristic polynomial ρ(r) will always
have one root r1 = 1.

The zero-stability requirement puts a severe restriction on the maximum order of a convergent
k-step method:

Theorem 6.3. (The first Dahlquist-barrier) The order p of a zero-stable k-step method satis-
fies

p ≤ k + 2 if k is even,
p ≤ k + 1 if k is odd,
p ≤ k if βk ≤ 0.

Notice that the last line include all explicit LMMs.

38

6.4 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For
instance by the following strategy:

The solution of the ODE satisfy the integral equation

y(tn+1)− y(tn) =

∫ tn+1

tn

f(t, y(t))dt. (48)

Assume that we have found fi = f(ti, yi) for i = n−k+ 1, · · · , n, with ti = t0 + ih. Construct
the polynomial of degree k − 1, satisfying

pk−1(ti) = f(ti, yi), i = n− k + 1, . . . , n.

The interpolation points are equidistributed (constant stepsize), so Newton’s backward differ-
ence formula can be used in this case (see Exercise 2), that is

pk−1(t) = pk−1(tn + sh) = fn +
k−1∑
j=1

(−1)j
(
−s
j

)
∇jfn

where
(−1)j

(
−s
j

)
=
s(s+ 1) · · · (s+ j − 1)

j!

and
∇0fn = fn, ∇jfn = ∇j−1fn −∇j−1fn−1.

Using yn+1 ≈ y(tn+1). yn ≈ y(tn) and pk−1(t) ≈ f(t, y(t)) in (48) gives

yn+1 − yn
∫ tn+1

tn

pk−1(t)dt = h

∫ 1

0
pk−1(tn + sh)ds

= hfn + h
k−1∑
j=1

(
(−1)j

∫ 1

0

(
−s
1

)
ds

)
∇jfn. (49)

This gives the Adams-Bashforth methods

yn+1 − yn = h

k−1∑
j=0

γj∇jfn, γ0 = 1, γj = (−1)j
∫ 1

0

(
−s
j

)
ds.

Example 6.6. We get

γ0 = 1, γ1 =

∫ 1

0
sds =

1

2
, γ2 =

∫ 1

0

s(s+ 1)

2
ds =

5

12

and the first few methods becomes:

yn+1 − yn = hfn

yn+1 − yn = h

(
3

2
fn −

1

2
fn−1

)
yn+1 − yn = h

(
23

12
fn −

4

3
fn−1 +

5

12
fn−1

)
39

A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for
explicit methods) and it is zero-stable. In addition, the error constant Cp+1 = γk. Implicit
Adams methods are constructed similarly, but in this case we include the (unknown) point
(tn+1, fn+1) into the set of interpolation points. So the polynomial

p∗k(t) = p∗k(tn + sh) = fn+1 +

k∑
j=1

(−1)j
(
−s+ 1

j

)
∇jfn+1

interpolates the points (ti, fi), i = n−k+ 1, . . . , n+ 1. Using this, we get the Adams-Moulton
methods

yn+1 − yn = h

k∑
j=0

γ∗j∇jfn+1, γ∗0 = 1, γ∗j = (−1)j
∫ 1

0

(
−s+ 1

j

)
ds.

Example 6.7. We get

γ∗0 = 1, γ∗1 =

∫ 1

0
(s− 1)ds = −1

2
, γ∗2 =

∫ 1

0

(s− 1)s

2
ds = − 1

12

and the first methods becomes

yn+1 − yn = hfn+1 (Backward Euler)

yn+1 − yn = h

(
1

2
fn+1 +

1

2
fn

)
(Trapezoidal method)

yn+1 − yn = h

(
5

12
fn+1 +

2

3
fn −

1

12
fn−1

)
.

A k-step Adams-Moulton method is implicit, of order k + 1 and is zero-stable. The error
constant Cp+1 = γ∗k+1. Despite the fact that the Adams-Moulton methods are implicit, they
have some advantages compared to their explicit counterparts: They are of one order higher,
the error constants are much smaller, and the linear stability properties (when the methods
are applied to the linear test problem y′ = λy) are much better.

k 0 1 2 3 4 5 6

γk 1 1
2

5
12

3
8

251
720

95
288

19087
60480

γ∗k 1 −1
2 − 1

12 − 1
24 − 19

720 − 3
160 − 863

60480

Table 1: The γ’s for the Adams methods.

6.5 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector)
methods. The nonlinear equations from the application of the implicit method are solved by
a fixed number of fixed point iterations, using the solution by the explicit method as starting
values for the iterations.

40

Example 6.8. We may construct a PC method from a second order Adams-Bashforth scheme
and the trapezoidal rule as follows:

y
[0]
n+1 = yn +

h

2
(3fn − fn−1) (P : Predictor)

for l = 0, 1, . . . ,m

f
[l]
n+1 = f(tn+1, y

[l]
n+1) (E : Evaluation)

y
[l+1]
n+1 = yn +

h

2
(f

[l]
n+1 + fn) (C : Corrector)

end

yn+1 = y
[m]
n+1

fn+1 = f(tn+1, yn+1). (E : Evaluation)

Such schemes are commonly referred as P(EC)mE schemes.

The predictor and the corrector is often by the same order, in which case only one or two
iterations are needed.

Error estimation in predictor-corrector methods.

The local discretization error of some LMM is given by

hτn+1 =

k∑
l=0

(αly(tn−k+1+l − hβly′(tn−k+1+l)) = hp+1Cp+1y
(p+1)(tn−k+1) +O(hp+2).

But we can do the Taylor expansions of y and y′ around tn rather than tn−k+1. This will not
alter the principal error term, but the terms hidden in the expression O(hp+2) will change.
As a consequence, we get

hτn+1 = hp+1Cp+1y
(p+1)(tn) +O(hp+2).

Assume that yi = y(ti) for i = n− k + 1, . . . , n, and αk = 1. Then

hτn+1 = y(tn+1)− yn+1 +O(hp+2) = hp+1Cp+1y
(p+1)(tn) +O(hp+2).

Assume that we have chosen a predictor-corrector pair, using methods of the same order p.
Then

(P) y(tn+1)− y[0]
n+1 ≈ h

p+1C
[0]
p+1y

(p+1)(tn),

(C) y(tn+1)− yn+1 ≈ hp+1Cp+1y
(p+1)(tn),

and
yn+1 − y[0]

n+1 ≈ h
p+1(C

[0]
p+1 − Cp+1)y(p+1)(tn).

41

From this we get the following local error estimate for the corrector, called Milne’s device:

y(tn+1)− yn+1 ≈
Cp+1

C
[0]
p+1] − Cp+1

(yn+1 − y[0]
n+1).

Example 6.9. Consider the PC-scheme of Example 6.8. In this case

C
[0]
p+1 =

5

12
, Cp+1 = − 1

12
, so

Cp+1

C
[0]
p+1] − Cp+1

= −1

6
.

Apply the scheme to the linear test problem

y′ = −y, y(0) = 1,

using y0 = 1, y1 = e−h and h = 0.1. One step of the PC-method gives

l y
[l]
2 |y2 − y[l]

2 | |y(0.2)− y[l]
2 | 1

6 |y
[l]
2 − y

[0]
2 |

0 0.819112 4.49 · 10−4 3.81 · 10−4

1 0.818640 2.25 · 10−5 9.08 · 10−5 7.86 · 10−5

2 0.818664 1.12 · 10−6 6.72 · 10−5 7.47 · 10−5

3 0.818662 5.62 · 10−8 6.84 · 10−5 7.49 · 10−5

After 1-2 iterations, the iteration error is much smaller than the local error, and we also
observe that Milne’s device gives a reasonable approximation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this
by e.g. using the trapezoidal rule on y′ = λy. The trapezoidal rule has excellent stability
properties. But the iteration scheme

y
[l+1]
n+1 = yn +

h

2
λ(y

[l]
n+1 + yn)

will only converge if |hλ/2| < 1.

For stiff system, the Backward differentiation formulas (BDF) is to be preferred. Those are
derived in exercise 5.

7 Differential-algebraic equations

Given the autonomous problem

F (y, y′) = 0, with initial values y(t0) = y0, y
′(t0) = y′0. (50)

By the implicit function theorem, if Fy′ is nonsingular in some neighbourhood around the
solution, then F can be solved with respect to y′, so we have in implicit formulated ODE. If
not, we have a differential-algebraic equation (DAE).

42

7.1 DAE theory

Differentiation index

The DAE (50) has differentiation index m where m is the minimum integer for which the
overdetermined system

F (y, y′) = 0

d

dt
F (y, y′) = 0

...
dm

dtm
F (y, y′) = 0

has a unique solution y′ in terms of y, that is

y′ = ϕ(y).

Example 7.1. Consider the simple pendulum problem given by

p′ = u

q′ = v

u′ = −pλ
v′ = −qλ− g
l2 = p2 + q2

p

q

m = 1

l

g

λ

v

where l and g are given constants, and the mass of the pendulum m = 1. Since we already
have expressions for the derivatives of p, q, u and v, we only need to express the derivative for
λ. And this can be done by repeated differentiation of the last, algebraic equation:

0 = 2pp′ + 2qq′ ⇒ 0 = pu+ qv

0 = p′u+ pu′ + q′v + vq′ ⇒ 0 = u2 + v2 − λl2 − gq

0 = 2uu′ + 2vv′ − λ′l2 − gq′ ⇒ λ′ = −3g

l2
v

So this problem is of index 1.

Perturbation index

The DAE (50) has perturbation index m along a solution y on [t0, t] if m is the smallest integer
s.t. for all functions ỹ(t) with a sufficiently small defect, that is

F (ỹ(t), ỹ′(t)) = δ(t)

there exist on [t0, t] an estimate

‖y(t)− ỹ(t)‖ ≤ C
(
‖y(t0)− ỹ(t0)‖+ max

τ∈[t0,t]
‖δ(τ)‖+ · · ·+ max

τ∈[t0,t]
‖δ(m−1)(τ)‖

)
43

Hessenberg DAEs

Index 1 DAE:

y′ = f(y, z) (51)
0 = g(y, z) gz is nonsingular

Index 2 DAE:

y′ = f(y, z) (52)
0 = g(y) gyfz is nonsingular

Index 3 DAE:

y′ = f(y, z) (53)
z′ = g(y, z, v)

0 = h(y) hyfzgv is nonsingular

etc: These are also sometimes called semi-implicit DAEs, in particular the index 1 case. The
Hessenberg DAEs has perturbation index equal to the differentiation index.

In the following, we will only consider the differentiation index.

Remarks:

• The Hessenberg index 1 problems are usually quite simple to solve by ODE methods.

• Higher index problems are more difficult, for (at least) two reasons.

– The solution has to satisfy “hidden constraints”, like the constraint 0 = gyf for
(52).

– The solution do not only involve integration and solution of algebraic algebraic
equations, but also differentiation. This can be seen from the simple index 2 ex-
ample

y′ = z, 0 = y − g(t)

which has the solution
y = g(t), z = g′(t).

Initial values y0, y
′
0 are consistent if they satisfy all constraints, visible as well as hidden.

Index reduction:

It is possible to reduce the index of a problem by using one of the constraints coming from
the differentiation process. For instance to solve

y′ = f, 0 = gyf

44

which is an index 1 problem rather than the original index 2 problem (52). As long as the
initial values are consistent, the exact solutions are the same. But, by doing so, information
about the visible constraint g(y) is lost, and we will no longer expect the numerical solution
to satisfy this constraint. Some times, the reduced system may even be unstable, so this idea
has to be used with care.

7.2 Runge–Kutta methods for DAEs

A Runge–Kutta method applied to the general DAE (50) is defined by

F (Yi, Y
′
i) = 0, Yi = yn + h

s∑
j=1

aijY
′
j , i = 1, . . . , s (54a)

yn+1 = yn + h
s∑
i=1

biY
′
i (54b)

For the nonlinear system to be solvable, we require the coefficient matrix A to be nonsingu-
lar, thus only implicit methods can in general be used for solving DAE problems (there are
important exceptions).

• A method has stage order ζ if the simplifying assumption C(η) is satified, that is when
s∑
i=1

aijc
q−1
j =

cqi
q!
, i = 1, . . . , s, q = 1, 2, . . . , η

• A method is stiffly accurate if bi = asi, i = 1, . . . , s.

• The stability constant R(∞) = lim|z|→∞R(z) = 1− bTA−1
1.

• For stiffly accurate methods R(∞) = 0.

7.2.1 Semi-explicit index 1 problems

Consider the DAE (51). In this case, z can be solved with respect to y, so z = ϕ(y), and a
Runge–Kutta method applied to this problem is given by

Yi = yn + h
s∑
j=1

aijf(Yj , Zj), 0 = g(Yi, Zi), i = 1, . . . , s (55a)

yn+1 = yn + h
∑
i=1

bif(Yi, Zi), 0 = g(yn+1, zn+1), (55b)

This is equivalent to solving the ODE y′ = f(y, ϕ(y)), and all the ODE theory apply.

But, if (54) is applied directly, (55b) is replaced by

yn+1 = yn + h
∑
i=1

bif(Yi, Zi), zn+1 = R(∞)zn +
s∑

i,j=1

biωijZj , (55c)

45

where ωij are the elements of Ω = A−1. For stiffly accurate methods, the formulations (55b)
and (55c) are equivalent. (Why?)

For the method (55a), (55b) the following theorem holds:

Theorem 7.1. Let A be nonsingular, the method be of classical order p and C(η) be satisfied.
If the initial values are consistent, then the numerical solution has a global order

yn − y(tn) = O(hp), zn − z(tn) = O(hr)

where

a) r = p for stiffly accurate methods.

b) r = min(p, η + 1) if −1 ≤ R(∞) < 1.

c) r = min(p, η) if R(∞) = 1

d) If |R(∞)| > 1 the numerical solution diverges.

A proof is given in [2, VI.1].

7.2.2 Semi-explicit index 2 problems

For a discussion on these problems, see [2, VII.4]

7.3 Backward differentiation formulas (BDF)

Let p(t) be the polynomial interpolating (tn+i, yn+i), i = 0, 1, . . . , k. Then

p′(tn+k) =
1

h

k∑
i=0

αiyn+i ≈ y′(tn+k).

The BDF method applied to the general DAE (50) is then

F (yn+k,
1

h

k∑
i=0

αiyn+k) = 0. (56)

If the initial values are of order k ≤ 6, then the BDF method applied to the Hessenberg
problems of index 1,2 and 3 is of order k. This applies also to variable stepsize methods, for
index 3 problems only for k ≥ 2.

46

References

[1] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations. I, volume 8
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second revised
edition edition, 1993. Nonstiff problems.

[2] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 2010. Stiff and differential-
algebraic problems, Second revised edition.

47

