
Natural cubic splines

Arne Morten Kvarving

Department of Mathematical Sciences
Norwegian University of Science and Technology

October 21 2008

Motivation

• We are given a “large” dataset, i.e. a function sampled in
many points.

• We want to find an approximation in-between these points.

• Until now we have seen one way to do this, namely high order
interpolation - we express the solution over the whole domain
as one polynomial of degree N for N + 1 data points.

t1 t2 t3 tn−1 xa = t0 b = tn

Motivation

• Let us consider the function

f (x) =
1

1 + x2
.

Known as Runge’s example.

• While what we illustrate with this function is valid in general,
this particular function is constructed to really amplify the
problem.

Motivation

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: Runge’s example plotted on a grid with 100 equidistantly spaced
grid points.

Motivation

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

6

7

8

exact

interpolated

Figure: Runge’s example interpolated using a 15th order polynomial
based on equidistant sample points.

Motivation

• It turns out that high order interpolation using a global
polynomial often exhibit these oscillations hence it is
“dangerous” to use (in particular on equidistant grids).

• Another strategy is to use piecewise interpolation. For
instance, piecewise linear interpolation.

x1 x2 xn−1 xxnx0

s0(x) s1(x)
sn−1(x)

y0

y1

Motivation

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: Runge’s example interpolated using piecewise linear interpolation.
We have used 7 points to interpolate the function in order to ensure that
we can actually see the discontinuities on the plot.

A better strategy - spline interpolation

• We would like to avoid the Runge phenomenon for large
datasets ⇒ we cannot do higher order interpolation.

• The solution to this is using piecewise polynomial
interpolation.

• However piecewise linear is not a good choice as the regularity
of the solution is only C 0.

• These desires lead to splines and spline interpolation.

t1 t2 t3 tn−1 x

s1(x) s2(x)
s0(x)

sn−1(x)

a = t0 b = tn

Splines - definition

A function S(x) is a spline of degree k on [a, b] if

• S ∈ C k−1[a, b].

• a = t0 < t1 < · · · < tn = b and

S(x) =

S0(x), t0 ≤ x ≤ t1

S1(x), t1 ≤ x ≤ t2
...

Sn−1(x), tn−1 ≤ x ≤ tn

where Si (x) ∈ Pk .

Cubic spline

S(x) =

S0(x) = a0x

3 + b0x
2 + c0x + d0, t0 ≤ x ≤ t1

...

Sn−1(x) = an−1x
3 + bn−1x

2 + cn−1x + dn−1, tn−1 ≤ x ≤ tn.

which satisfies

S(x) ∈ C 2[t0, tn] :

Si−1(xi) = Si (xi)

S ′
i−1(xi) = S ′

i (xi)

S ′′
i−1(xi) = S ′′

i (xi)

 , i = 1, 2, · · · , n − 1.

Cubic spline - interpolation

Given (xi , yi)
n
i=0. Task: Find S(x) such that it is a cubic spline

interpolant.

• The requirement that it is to be a cubic spline gives us
3(n − 1) equations.

• In addition we require that

S(xi) = yi , i = 0, · · · , n

which gives n + 1 equations.

• This means we have 4n − 2 equations in total.

• We have 4n degrees of freedom (ai , bi , ci , di)
n−1
i=0 .

• Thus we have 2 degrees of freedom left.

Cubic spline - interpolation

We can use these to define different subtypes of cubic splines:

• S ′′(t0) = S ′′(tn) = 0 - natural cubic spline.

• S ′(t0),S
′(tn) given - clamped cubic spline.

•

S ′′′
0 (t1) = S ′′′

1 (t1)

S ′′
n−2 (tn−1) = S ′′′

n−1 (tn−1)

}
- Not a knot condition (MATLAB)

Natural cubic splines

Task: Find S(x) such that it is a natural cubic spline.

• Let ti = xi , i = 0, · · · , n.

• Let zi = S ′′(xi), i = 0, · · · , n. This means the condition that
it is a natural cubic spline is simply expressed as z0 = zn = 0.

• Now, since S(x) is a third order polynomial we know that
S ′′(x) is a linear spline which interpolates (ti , zi).

• Hence one strategy is to first construct the linear spline
interpolant S ′′(x), and then integrate that twice to obtain
S(x).

Natural cubic splines

• The linear spline is simply expressed as

S ′′
i (x) = zi

x − ti+1

ti − ti+1
+ zi+1

x − ti
ti+1 − ti

.

• We introduce hi = ti+1 − ti , i = 0, · · · , n which leads to

S ′′(x) = zi+1
x − ti

hi
+ zi

ti+1 − x

hi
.

• We now integrate twice

Si (x) =
zi+1

6hi
(x − ti)

3 +
zi

6hi
(ti+1 − x)3

+ Ci (x − ti) + Di (ti+1 − x) .

Natural cubic splines

• Interpolation gives:

Si (ti) = yi ⇒
zi

6
h2
i + Dihi = yi , i = 0, · · · , n.

• Continuity yields:

Si (ti+1) = yi+1 ⇒
zi+1

6
h2
i + Cihi = yi+1.

Natural cubic splines

• We insert these expressions to find the following form of the
system

Si (x) =
zi+1

6hi
(x − ti)

3 +
zi

6hi
(ti+1 − x)3

+

(
yi+1

hi
− zi+1

6
hi

)
(x − ti)

+

(
yi

hi
− hi

6
zi

)
(ti+1 − x) .

• We then take the derivative.

Natural cubic splines

• The derivative reads

S ′
i (x) =

zi+1

2hi
(x − ti)

2 − zi

2hi
(ti+1 − x)2

+
1

hi
(yi+1 − yi)︸ ︷︷ ︸

bi

−hi

6
(zi+1 − zi) .

• In our abscissas this gives

S ′
i (ti) = −1

2
zihi + bi −

hi

6
zi+1 +

1

6
hizi

S ′
i (ti+1) =

zi+1

2
hi + bi −

hi

6
zi+1 +

1

6
hizi

Si−1 (ti) =
1

3
zihi+1 +

1

6
hi−1zi−1 + bi−1

S ′
i (ti) = Si−1 (ti) ⇒

6 (bi − bi−1) = hi−1z−1 + 2 (hi−1 + hi) zi + hizi+1.

Natural cubic splines - algorithm

This means that we can find our solution using the following
procedure:

• First do some precalculations

hi = ti+1 − ti , i = 0, · · · , n − 1

bi =
1

hi
(yi+1 − yi) , i = 0, · · · , n − 1

vi = 2 (hi−1 + hi) , i = 1, . . . , n − 1

ui = 6 (bi − bi−1) , i = 1, · · · , n − 1

z0 = zn = 0

Natural cubic splines - algorithm

• Then solve the tridiagonal system

v1 h1

h1 v2 h2

h2 v3 h3

. . .
. . .

. . .
. . .

. . . hn−2

hn−2 vn−1

z1

z2

z3
...

zn−2

zn−1

=

u1

u2

u3
...

un−2

un−1

.

Natural cubic splines - example

• Given the dataset

i 0 1 2 3

xi 0.9 1.3 1.9 2.1
yi 1.3 1.5 1.85 2.1

hi = xi+1 − xi 0.4 0.6 0.2
bi = 1

hi
(yi+1 − yi) 0.5 0.5833 1.25

vi = 2 (hi−1 + hi) 2.0 1.6
ui = 6 (bi − bi−1) 0.5 4

• The linear system reads[
2.0 0.4
0.4 1.6

] [
z1

z2

]
=

[
0.5
0.4

]

Natural cubic splines - example

• We find z0 = 0.5, z1 = 0.125. This gives us our spline
functions

S0(x) = 0.208 (x − 0.9)3 + 3.78 (x − 0.9) + 3.25 (1.3− x)

S1(x) = 0.035 (x − 1.3)3 + 0.139 (1.9− x)3 + 0.664− 0.62x

S2(x) = 0.104 (x − 1.9)3 + 10.5 (x − 1.9) + 9.25 (2.1− x)

Gaussian elimination of tridiagonal systems

• Assume we are given a general tridiagonal system
d1 c1

a1 d2 c2

. . .
. . .

. . .

cn−1

an−1 dn

 ,

b1

b2
...

bn−1

bn

 .

• First elimination (second row) yields
d1 c1

0 d̃2 c2

. . .
. . .

. . .

cn−1

an−1 dn

 ,

b1

b̃2
...

bn−1

bn

 ,

d̃2 = d2 −
a1

d1
c1

b̃2 = b2 −
a1

d1
b1

Gaussian elimination of tridiagonal systems

• This means that the elimination stage is

for i =2, · · · , n

m = ai−1/di−1

d̃i = di −mci−1

b̃i = bi −mbi−1

end

• And the backward substitution reads

xn = b̃n/dn

for i =n − 1, · · · , 1

xi =
(
b̃i − cixi+1

)
/d̃i

end

where b̃1 = b1.

Gaussian elimination of tridiagonal systems

• This will work out fine as long as d̃i 6= 0.

• Assume that |di | > |ai−1|+ |ci | - i.e. diagonal dominance.

• For the eliminated system diagonal domiance means that

|d̃i | < |ci |.

• We now want to show that diagonal domiance of the original
system implies that the eliminated system is also diagonal
dominant.

Gaussian elimination of tridiagonal systems

• We now assume that |d̃i−1| > |ci−1|. This is obviously
satisfied for d̃1 = d1.

|d̃i | = |di −
ai−1

d̃i−1

ci−1| ≥ |di | −
|ai−1|
|d̃i−1|

|ci−1|

> |ai−1 − |ci | − |ai−1| = |ci |.

• Hence the diagonal domiance is preserved which means that
d̃i 6= 0. The algorithm produces a unique solution.

Why cubic splines?

• Now to motivate why we use cubic splines.

• First, let us introduce a measure for the smoothness of a
function:

µ(f) =

∫ b

a
(f ′′(x))2 dx . (1)

• We then have the following theorem

Theorem

Given interpolation data (ti , yi)
n
i=0. Among all functions

f ∈ C 2[a, b] which interpolates (ti , yi), the natural cubic spline is
the smoothest, where smoothness is measured through (1).

Why cubic splines?

• We need to prove that

µ(f) ≥ µ(S)∀ f ∈ C 2[a, b].

• Introduce

g(x) = S(x)− f (x),
g(x) ∈ C 2[a, b]

g (ti) = 0, i = 0, · · · , n.

• Inserting this yields

µ(f) =

∫ b

a

(
S ′′(x)− g ′′(x)

)2 dx

= µ(S) + µ(g)− 2

∫ b

a
S ′′(x)g ′′(x) dx

Now since µ(g) > 0, we have proved our result if we can show
that ∫ b

a
S ′′(x)g ′′(x) dx = 0.

Why cubic splines?

• We have that∫ b

a
S ′′(x)g ′′(x) dx = g ′(x)S ′′(x)

∣∣b
a
−

∫ b

a
g ′(x)S ′′′(x) dx

First part on the right hand side is zero since z0 = zn = 0.
Second part we split in an integral over each subdomain

−
∫ b

a
g ′(x)S ′′′(x) dx = −

n−1∑
i=0

∫ t i+1

t i

g ′(x)S ′′′(x) dx

= −
n−1∑
i=0

6ai

∫ ti+1

ti

g ′(x) dx

= −
n−1∑
i=0

6ai g(x)|ti+1
ti = 0.

Cubic spline result

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: Runge’s example interpolated using cubic spline interpolation
based on 15 equidistant samples.

