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SOLUTION TO THE EXAM IN NUMERICAL MATHEMATICS (TMA4215)

December 19, 2009

Problem 1 Let f(x) = 2%Inx, so that

5(0.25) = O—? (F(1.0) +4£(1.25) + 2£(1.5) + 4f(1.75) + £(2.0)) = 1.070594.

The error is given by

(b—a)
180

2

/ ?Inzde — S(h) = — @),  ce(,2).
1

So, since ¥ (z) = —2/22, we get |f*(€)] < 2, and the error bound becomes

2
/ 2 Inxdr — S(0.25)] < 4.34-107°.
1

Problem 2

a) By straightforward computations we get
xM =11.0,1.0,1.0,1.0]7,
x) = [0.866670.93333,0.92500, 0.93333]T .

b) The iterative scheme can be rewritten as
x*tl = Gx®) ¢, G=N'P, ¢c=N"'b

so that
Ix*+) — x| < [|G]l][x® — x]|.
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Now
1 -1/3 0 0 1/30 0 —1/15 —1/10
40 13 0 0 =130 0 —1/30 0
No=1o 0 14 o sothat  G=1_1/40 _1/40 0 —1/40
0 0 0 1/3 ~1/30 0  -1/30 0

and ||G||e = 0.2, proving the result in max-norm.

We also have the result

k
0 sl < MGl ey o NGl ) L0
0o co > 00>

s0 ||x(®) — x||o < 0.03333. If you use the last expression, the bound will be 0.05.

Problem 3

a) We get
15 , 19
p(x) = ——a“+ —u.

8 8
b) The polynomial ¢(x) has to be of the form
q(z) =p(x) +ax(z —0.6) (x — 1).
The condition ¢/(0.6) = 0.5 gives « = —25/16, so that

, 23

o 3

(z) = 2 n 5

R T

c) The expression is obviously correct for the nodes z = 0, 0.6 and = = 1. Following the
idea of the proof for interpolation errors of the ordinary interpolation polynomial, choose
an z different from the nodes, keep it fixed, and define a function ¢(t) by

fz) - Q(@’

w(z)

o(t) = f(t) —p(t) — dw(t), A=

and w(x) is given in the exam set. ¢(¢) = 0 at 4 distinct points, the nodes and z. But
¢ (t) has at least 4 zeros as well, 3 in the intervals between the zeros of ¢(t), and one in
t = 0.6. So, by repeated use of Rolle’s theorem, we get that ¢(*) (t) = 0 at least once in
the interval (0, 1), this is the point called &,. So for an arbitrary = we get

f(x) —q(x)

w(z) A

0=0W(&) =fM(E)—0-

which gives the expected result. The error expression is valid as long as f € C*[0,1].
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Problem 4

a) Using v =y, w =y the first order system is

v =w v(0) = yo,
w' = f(t,v), w(0) = y/'(0).
Two step with Eulers method becomes
Up = Up—1 + hwp_1 Upt1l = Up + hwy,
Wy, = Wp—1+ hf(tn—1,0n-1) Wpt1 = Wy + A f(ty,vn)

The upper right expression for v,11 can then be written as

hwnfl
2
Up41 = Up + (Un - Un—l) +h f(tn—l’ yn—l)-

Using v, = yn, we get the expected result.

In this case the local truncation error is given by

W2 7g1(h) = yY(tnsr) — 2y(tn) + y(tn-1) — h*y" (tn-1).

The Taylor expansion around t,_1 (you may choose another point) becomes

W2 7aga(h) = (1= 24+ Dy(tn-1) + h(2 = 2y (ta1) + ’f<4 —2)y" (tn-1)
+ ig(s —2)y" (tp_1) + - — h%Y (tn_1)

:h3y///(tn_1> +een

The method is consistent of order 1. The characteristic polynomial becomes p(r) =
r2 —2r +1 = (r — 1)2, so it has a double root at r — 1, the stability condition is then
satisfied.

The method is convergent of order 1.

b) Follow the same idea as when developing the Adams-Bashforth methods. The Newton
backward polynomial form is
p(t) = p(ty, + sh) = fo+ sV fo + V3,

s(s+1)
2

with Vf, = fo— fu1 and V2f, = fu —2fn_1+ fn_2. From the formula in the appendix,
using f(t,y(t)) = p(t) we get

tn+1 tn
y(thrl) - Qytn + y(tnfl) ~ / (tn +h— t)p(t)dt - / (tn —h+ t)p(t)dt
tn

tho1
1 0
= K2 </0 (1 —s)p(tn + sh)ds + /_1(—1 — 5)p(tn + Sh)d5’>
= h? (O’()fn +o1Vfn+ O'QVan) )
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with

1 0 1 0
aoz/(l—s)ds+/ (L+s)ds =1, 01:/ s(l—s)d8+/ s(1+s)ds =0,
0 0

-1 -1

and

_ [ts(s+1) O s(s41) 1
02_/0 (1—5)ds+/ D04 s)s = o

So, our method becomes

13

1 1 1
n -2 n n—1 — h2 n —V? n | = h2 —f{tn,yn) — = (tn- n— — fln- n—
Ynt+1—2Yn+Yn—1 (f + 5V f) (12f( vYn) = g f -1 yn-1) + 15 f(ta2,y 2))

The stability properties of the method is as in a), and the local truncation error becomes
2 L 5 5
h*Tp41(h) = ﬁh Yy (tp—2)) + -+ .

The method is convergent of order 4.



