Norwegian University of Science and Technology Department of Mathematical Sciences

Page 1 of 3

Contact during exam: Anne Kværnø (92663824)

EXAM IN NUMERICAL MATHEMATICS (TMA4215)

Tuesday December 4 2007 Time: 15:00 – 19:00 Final grades: January 4.

Permitted aids (code B):

All printed and hand written aids. Approved calculator.

Problem 1 The expected life time t of an industrial fan at different temperatures T is given by

Temperature (°C)
30 40 50 60

Life time(×1000 hours)
91
75 63 54

Find the third order polynomial p(T) which interpolates this data set. Use the polynomial to approximate the expected life time at 55°C.

Problem 2 In this problem we study an implicit multi step method given by

$$y_{m+2} - (1+a)y_{m+1} + ay_m = h\left[f_{m+2} - \frac{1+a}{2}f_{m+1} + \frac{1-a}{2}f_m\right],\tag{1}$$

where $f_l = f(x_l, y_l)$ and a is a real number.

- a) Find the order of the method and give the error constant for all values of a.
- b) A student wants to test the method by applying it to find the solution of the equation

$$y' = -y^2, \qquad y(0) = 1.$$
 (2)

at t = 1. She uses h = 0.1 and the exact solution $y_0 = 1$ and $y_1 = 1/(1+h)$ as initial values. The nonlinear equation in y_{m+2} is solved to machine precision at each step.

The results for two different values of a are given in the table below. Since this is a test, the absolute value of the errors are also given.

	a = 0		a = 7	
x_m	y_m	$ y(x_m) - y_m $	y_m	$ y(x_m) - y_m $
0.0	1.0000	0	1.0000	0
0.1	0.9091	0	0.9091	0
0.2	0.8313	$2.0271 \cdot 10^{-3}$	0.8338	$4.5256 \cdot 10^{-4}$
0.3	0.7659	$3.3506 \cdot 10^{-3}$	0.7729	$3.6924 \cdot 10^{-3}$
0.4	0.7102	$4.0709 \cdot 10^{-3}$	0.7397	$2.5408 \cdot 10^{-2}$
0.5	0.6622	$4.4176 \cdot 10^{-3}$	0.8354	$1.6871 \cdot 10^{-1}$
0.6	0.6205	$4.5396 \cdot 10^{-3}$	1.6697	$1.0447 \cdot 10^{+0}$
0.7	0.5837	$4.5266 \cdot 10^{-3}$	5.6463	$5.0581 \cdot 10^{+0}$
0.8	0.5511	$4.4332 \cdot 10^{-3}$	17.2646	$1.6709 \cdot 10^{+1}$
0.9	0.5220	$4.2932 \cdot 10^{-3}$	42.9463	$4.2420 \cdot 10^{+1}$
1.0	0.4959	$4.1278 \cdot 10^{-3}$	97.5861	$9.7086 \cdot 10^{+1}$

Explain the obtained results. Which value of a would you recommend?

c) Construct a predictor-corrector method with (1) as corrector and the "leap frog" method

$$y_{m+2} - y_m = 2hf(x_{m+1}, y_{m+1})$$

as predictor. Use a = 0. Apply the obtained method to find an approximation of (2) at t = 2h. Use h = 0.1 and the exact initial values. Also give an estimate of the local truncation error.

Problem 3 Let $P_s(x)$ be the monic Legendre polynomial of degree s, and define

$$R_s(x) = P_s(x) + \frac{s}{2s - 1} P_{s-1}(x)$$

 $R_s(x)$ has s distinct, real roots x_i in the interval [-1, 1]. These roots can be used to construct quadrature formulas

$$Q_s(f) = \sum_{i=1}^s A_i f(x_i) \approx \int_{-1}^1 f(x) \, \mathrm{d}x = I(f),$$

such that $Q_s(p) = I(p)$ for all polynomials p of degree less than s.

- a) Let s = 2, and find $Q_2(f) = A_1 f(x_1) + A_2 f(x_2)$. What is the degree of precision of $Q_2(f)$?
- **b)** Use Q_2 to approximate the integral $\int_{t_j}^{t_j+h} f(t) dt$. Proceed by using this to construct a composite quadrature formula based on

$$\int_{a}^{b} f(t) \, \mathrm{d}t = \sum_{j=0}^{n-1} \int_{t_{j}}^{t_{j}+h} f(t) \, \mathrm{d}t, \qquad t_{j} = a + jh, \quad h = \frac{b-a}{n}$$

Give the explicit expression for the error in the composite formula.

- (Given: $\int_{-1}^{1} f(x) dx Q_2(f) = \frac{2}{27} f^{(3)}(\xi), \quad \xi \in (-1, 1).$)
- c) Use the quadrature formula from task b) with n = 2 to approximate the integral

$$\int_0^1 \frac{1}{1+t} \,\mathrm{d}t.$$

Also give an upper bound for the error.

What is the value of n needed to guarantee that the error is less than 10^{-5} ?

(If you did not obtain the answer to task b), use Simpson's composite formula with n = 4 instead.)

d) Show that $Q_s(f)$ has degree of precision 2s - 2.