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1 Introduction

This note is written to explain how to develop an order theory for onestep meth-
ods applied to initial value problems, in particular ordinary differential equa-
tions (ODEs) and differential-algebraic equations (DAEs). In modern advanced
text-books, like the ones in the reference lists, there are excellent expositions of
the theory for Runge-Kutta methods applied to ODEs, and some even treats
DAE problems. In the literature, order theory for a wide range of problems
and one-step methods has been treated. But mostly, one combination at the
time. The ambition for this note is explain how to develop order theory, from
some rather general assumptions. These assumptions are essentially that both
the exact and the numerical solution can be written, as least formally, as power
series of the stepsize h, and that each term corresponding to a certain power
of h might be split into several terms. But exactly how these series looks like
depends on both the problem and the method under consideration.

Section 2 presents some general definitions and results needed for the rest of
the paper. These results are not related to a certain problem or method. Section
3 will use these results to develop order theory for Runge-Kutta methods applied
to ODEs. A later section (not yet finished) will consider Runge-Kutta methods
applied to DAEs. The paper might be extended with more sections in some
remote future.

2 Key definitions and results

The aim of this paper is to develop an order theory for some initial value
problem solved by some one-step method. To do so, we will assume that both
the exact solution, y(t0 +h) satisfying the initial condidtion y(t0) = y0, and the
numerical solution y1 ≈ y(t0 + h) can be written as power series of h, thus

y(t0 + h) =
∞∑
p=0

y(p)(0)
hp

p!
(1)

y1 = y1(h) =
∞∑
p=0

y
(p)
1 (0)

hp

p!
(2)
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where y(p)(0) =
∂py(t0 + h)

∂hp
|h=0 =

∂py(t)
∂tp

|t=t0 and y
(p)
1 (0) =

∂py1(h)
∂hp

|h=0. The
local truncation error d is given by

d = y(t0 + h)− y1(h) =
∞∑
p=0

(y(p)(0)− y(p)
1 (0))

hp

p!

thus we will find the order of a method by comparing y(p)(0) with y
(p)
1 (0).

However, each of these terms might split into several terms. We will use trees,
denoted by τ to keep track of these terms. Doing so, y(p) can be written as

y(p)(0) =
∑
τ∈T
|τ |=p

α(τ)F (τ)(y0) (3)

where the elementary differentials are those mysterious terms we are looking
for, while α(τ) are the number of equal terms in the sum. The meaning of the
order of the tree, |τ |, should be clear. Using this notation, the exact solution is
written as the following power series of h:

y(t0 + h) =
∑
τ∈T

α(τ)F (τ)(y0)
h|τ |

|τ |!
(4)

The standard convention is to use ∅ for the order zero tree, so for p = 0 (3)
becomes

y(t0) =
∑
τ∈T
|τ |=0

α(τ)F (τ)(y0) = α(∅)F (∅)(y0).

We can immediately conclude that |∅| = 0, α(∅) = 1 and F (∅)(y0) = y0. The
remaining terms will be found by recursion. We will like the numerical solution
y1 to be written in terms of a similar series, that is

y1(h) =
∑
τ∈T

α(τ)ψ(τ)F (τ)(y0)
h|τ |

|τ |!
(5)

where the coefficients ψ(τ) are method dependent. This motivates the following
definition:

Definition 1 A B-series is a series of the form

B(φ, y0;h) =
∑
τ∈T

α(τ)φ(τ)F (τ)(y0)
h|τ |

|τ |!

where α(τ) : T → N\{0}, |τ | : T → N, φ(τ) : T → R.

We will call the series consistent if B(φ, y0; 0) = y0, or equivalent

B(φ, y0;h) = y0 +
∑
τ∈T
|τ |≥1

α(τ)φ(τ)F (τ)(y0)
h|τ |

|τ |!
.
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Remark 1: For the exact solution of the problem under consideration the B-
series will be specified by y(t0 +h) = B(1, y0;h) and we hope to find ψ(τ) such
that y1 = B(ψ, y0;h).
Remark 2: Definition 1 is less specific than what is common in the literature,
where B-series is strictly related to ODEs, such that T , α and the elementary
differentials F are defined. But our long-term objective is to develop order
theory for a lot of different problem and methods, and for this purpose an open
definition is more convenient.

The next definition can be found in [3], see also Butcher [1]:

Definition 2 Let y = [y1, y2, · · · , yN ]T ∈ RN and f(y) = [f1(y), f2(y), · · · , fn(y)]T ∈
Rn. The m′th Frechet derivative of f , denoted by fmy(y) is a m-linear opera-
tor RN × RN × · · · × RN (m times) → Rn. Evaluation of component i of this
operator working on the m operands v1, v2, · · · vm ∈ RN is given by

[fmy(y)(v1, v2, · · · , vm)]i =
N∑
j1=1

N∑
j2=1

· · ·
N∑

jm=1

∂mfi(y)
∂yj1∂yj2 · · · ∂yjm

v1,j1v2,j2 · · · vm,jm

where vl = [vl,1, vl,2, · · · vl,N ] ∈ RN for l = 1, 2, · · · ,m.

Note that the m’th Frechet derivative is independent of permutations of its
operands, thus e.g. f3y(v1, v2, v3) = f3y(v3, v1, v2).

In the next lemma and its proof the following concepts are useful:
A list of trees, denoted by {τ1, τ2, · · · , τm}, τi ∈ T , i = 1, · · · ,m is a ordered

set of trees, where each tree might appear more than once. If τ1, τ2 ∈ T then
{τ1, τ2, τ1} and {τ2, τ1, τ1} are two different lists. If a tree appear k times in the
list, the tree has multiplicity k. A multiset of trees, denoted by (τ1, τ2, · · · , τm)
is a set of trees where multiplicity is allowed but order does not matter. So
(τ1, τ2, τ1) = (τ2, τ1, τ1). A tree with multiplicity k will sometimes be denoted
by tk, so (τ1, τ2, τ1) = (τ2

1 , τ2). The set of all possible lists of trees is denoted
Ũ , and the set of all possible multisets is denoted U :

Ũ = {{τ1, τ2, · · · , τm} : τi ∈ T, i = 1, · · · ,m, m = 0, 1, 2, · · · },
U = {(τ1, τ2, · · · , τm) : τi ∈ T, i = 1, · · · ,m, m = 0, 1, 2, · · · }.

The following lemma is the key tool in this paper:

Lemma 1 Let Z = B(φ, y0;h) be a consistent B-series and let f : RN → Rn.
Then

f(Z) =
∑
u∈U

αf (u)βf (u)Ff (u)(y0)
h|u|f

|u|f !
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where for each u = (τ1, τ2, · · · , τm) ∈ U we have

|∅|f = 0, |u|f =
m∑
i=1

|τi|
(

and |u| ≥ 1 if u 6= (∅)
)
.

αf ((∅)) = 1, αf (u) = |u|f !
m∏
i=1

α(τi)
|τi|!

l∏
j=1

1
kj !

.

βf ((∅)) = 1, βf (u) =
m∏
i=1

φ(τi)

Ff ((∅))(y0) = f(y0), Ff (u)(y0) = fmy(y0)(F (τ1)(y0), F (τ2)(y0), · · · , F (τm)(y0)).

In the expression for αf (u), u is a multiset with l distinct trees, each of multi-
plicity kj, j = 1, · · · , l.

Proof: Taylors theorem for a multivalued function f(y), f : RN → Rn states
that if δ ∈ RN then

f(y + δ) = f(y) + fy(y)δ +
1
2
f2y(δ, δ) + · · · =

∞∑
m=0

1
m!
fmy(y)(

m times︷ ︸︸ ︷
δ, δ, · · · , δ).

Since φ(∅) = 1 we have

f(Z) = f
(
y0 +

∑
τ∈T
|τ |≥1

α(τ)φ(τ)F (τ)(y0)
)

=
∞∑
m=0

1
m!
fmy(y0)

( ∑
τ1∈T
|τ1|≥1

α(τ1)φ(τ1)F (τ1)(y0)
h|τ1|

|τ1|!
, · · · ,

∑
τm∈T
|τm|≥1

α(τm)φ(τm)F (τm)(y0)
h|τm|

|τm|!

)
.

Taking advantage of the fact that Frechet derivative is linear in its operand,
the sums as well as all the coefficients can be taken outside the derivative:

f(Z) =
∞∑
m=1

1
m!

∑
τ1∈T
|τ1|≥1

· · ·
∑
τm∈T
|τm|≥1

α(τ1) · · ·α(τm)φ(τ1) · · ·φ(τm)
h|τ1|

|τ1|!
· · · h

|τm|

|τm|!

· fmy(y0)
(
F (τ1)(y0), · · · , F (τm)(y0)

)
These sums can be replaced by the sum over all possible lists of subtrees ũ =
{τ1, · · · , τm} ∈ Ũ , including the empty list {∅} for m = 0. But the Frechet
derivative is symmetric in its operands, thus all permutations of the trees in a
list results in the same expression. If there are l distinct trees in the list, each
with multiplicity kj , j = 1, · · · , l, then there are

m!
k1!k2! · · · kl!

possible permutations of the trees. Thus we can take the sum over all multisets
u = (τ1, · · · , τm) ∈ U , just keeping in mind that each such set represents
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m!
k1!k2!···kl! equal terms. This will finally give us the expression

f(Z) =
∑
u∈U

( m∏
i=1

α(τi)
|τi|!
·
l∏

j=1

1
kj !

)
·
( m∏
i=1

φ(τi)
)
·fmy(y0)

(
F (τ1)(y0), · · · , F (τm)(y0)

)
·h(

Pm
i=1 |τi|)

which proves the theorem.

�

3 Ordinary differential equations and Runge-Kutta
methods

Consider the autonomous initial value problem (IVP) for ordinary differential
equations (ODEs)

y′(t) = f(y(t)), y(t0) = y0, f, y ∈ Rn (6)

where f is assumed sufficiently smooth. In this section we will see how to derive
a B-series for the exact and numerical solution of this ODE. The books [1, 2, 3]
have all excellent expositions of this topic.

Development of the B-series for the exact solution

The B-series for the exact solution is the series for which φ(τ) = 1, ∀τ ∈ T ,
thus

y(t0 + h) = y0 +
∑
τ∈T
|τ |≥1

α(τ)F (τ)(y0)
h|τ |

|τ |!
. (7)

However, at the moment we know nothing about how this series look like, except
that the first two terms are y0 and hf(y0). So, we can denote the first two terms
by

∅ ∈ T, |∅| = 0, α(∅) = 1, F (∅)(y0) = y0,

• ∈ T, | • | = 1, α(•) = 1, F (•)(y0) = f(y0).

Insert this into the ODE (6) and we get.

y′(t0 + h) = f(y(t0 + h)) = f(B(1, y0;h))

Lemma 1 apply to the right hand side. Taking the Taylor-expansion of the left
hand side gives

∞∑
p=0

y(p+1)(0)
hp

p!
=
∑
u∈U

αf (u)Ff (u)(y0)
h|u|f

|u|f !
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using βf (u) = 1 since φ(τi) = 1 by assumption. Comparing equal powers of h,
using (7) gives

y(p+1)(0) =
∑
τ∈T
|τ |=p+1

α(τ)F (τ)(y0) =
∑
u∈U
|u|=p

αf (u)Ff (u)(y0)

The two last expressions should be identical, term by term. For each tree τ ∈ T
of order p + 1 there is a corresponding multiset u ∈ U of order p. For u =
(τ1, τ2, · · · , τm) the corresponding tree will be written as τ = [τ1, τ2, · · · , τm].
The graphical interpretation of this is that the roots of the subtrees are attached
to a new common root. The order of τ = [τ1, τ2, · · · , τm] is |u|f + 1, and
α(τ) = αf (u), F (τ)(y0) = Ff (u)(y0) are all given by Lemma 1. Thus we can
state the following theorem:

Theorem 1 The exact solution of the ODE y′(t) = f(y(t)), y(t0) = y0 can be
expressed as a B-series

y(t0 + h) = B(1, y0;h) =
∑
τ∈T

α(τ)F (τ)(y0)
h|τ |

|τ |!

where

• ∅ ∈ T , • ∈ T and if τ1, τ2, · · · , τm ∈ T then τ = [τ1, τ2, · · · , τm] ∈ T .

• |∅| = 0, | • | = 1 and if τ = [τ1, τ2, · · · , τm] ∈ T then |τ | =
∑m

i=1 |τi|+ 1.

• α(∅) = 1, α(•) = 1 and if τ = [τ1, τ2, · · · , τm] ∈ T is a tree with l distinct
subtrees each of multiplicity kj, j = 1, · · · , l, then

α(τ) = (|τ | − 1)!
m∏
i=1

α(τi)
|τi|!

l∏
j=1

1
kj !

.

• F (∅)(y0) = y0, F (•) = f(y0) and if
τ = [τ1, τ2, · · · , τm] ∈ T then

F (τ)(y0) = fmy(y0)(F (τ1)(y0), F (τ2)(y0), · · · , F (τm)(y0)).

This theorem makes it possible to define B-series related to ODEs as series
B(φ, y0;h), for which T , |cdot|, α and F are all given, but with φ : T → R. In
the remaining part of this section, this is the B-series we talk about!

From Lemma 1 we get for a consistent B-series, (and for f from the ODE):

f(B(φ, y0;h) =
∑
τ∈T
|τ |≥1

α(τ)β(τ)F (τ)(y0)
h(|τ |−1)

(|τ | − 1)!

in which β(•) = 1 and β(τ) =
∏m
i=1 φ(τi). Multiplying this by hm we get the

following useful result:
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Lemma 2 Let B(φ, y0;h) be a consistent B-series related to ODEs. Then

hf(B(φ, y0;h) = B(φ′, y0;h)

where

φ′(∅) = 0, φ′(•) = 1, φ′(τ) = |τ |
m∏
i=1

φ(τi) if τ [τ1, · · · , τm].

Development of the B-series for the numerical solution

An s-stage Runge-Kutta method (RK), applied to the ODE (6) is given by

Yi = y0 + h

s∑
j=1

aijf(Yj), i = 1, · · · , s, (8)

y1 = y0 + h
s∑
i=1

bif(Yi)

where {Yi}si=1 are the internal stage values and y1 is the numerical solution after
one step of stepsize h. The coefficients aij and bi characterising the RK-method
is given by the Butcher-tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

cs as1 as2 · · · ass
b1 b2 · · · bs

or in matrix form as
c A

bT

We assume that the RK-nodes ci =
∑s

j=1 aij for i = 1, · · · , s, or c = A1s where
1 = [1, 1, · · · , 1] ∈ Rs.

The next step is to write the numerical solution, given by (8) as a B-series
related to the ODE.

Yi = Yi(h) =
∑
τ∈T

α(τ)ϕi(τ)F (τ)(y0)
h|τ |

|τ |!
, i = 1, · · · , s

y1 = y1(h) =
∑
τ∈T

α(τ)ψ(τ)F (τ)(y0)
h|τ |

|τ |!
.

Clearly, these series are consistent. If we insert this into (8) and apply Lemma
2 we get

B(ϕi, y0;h) = y0 +
s∑
j=1

aijB(ϕ′j , y0;h), i = 1, · · · , s

B(ψ, y0;h) = y0 +
s∑
i=1

biB(ϕ′i, y0;h).
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Write out the series, compare term by term, and we get:

ϕi(∅) = 0, ϕi(τ) =
s∑
j=1

aijϕ
′
j(τ), ψ(∅) = 0, ψ(τ) =

s∑
i=1

biϕ
′
i(τ),

and we have shown:

Theorem 2 The internal stage values Yi, i = 1, · · · , s and the numerical solu-
tion y1 given by (8) can be written as B-series related to ODEs, that is

Yi = B(ϕi, y0;h), y1 = B(ψ, y0;h)

with coefficients

• ϕi(∅) = 1, ϕ(•)i =
s∑
j=1

aij = ci and if τ = [τ1, τ2, · · · , τm] ∈ T then

ϕi(τ) = |τ |
s∑
j=1

aij

m∏
l=1

ϕ(τl).

• ψ(∅) = 1, ψ(•) =
s∑
i=1

bi and if τ = [τ1, τ2, · · · , τm] ∈ T then

ψ(τ) = |τ |
s∑
i=1

bi

m∏
l=1

ϕi(τl).

Remark 1: In the literature, it is common to write the coefficients ψ(τ) as
γ(τ)ψ̄(τ). Then γ(τ) is an integer, called the density of the tree t, while the
elementary weights ψ̄(τ) consists solely of the method coefficients. The order
conditions is the written as ψ̄(τ) = 1/γ(τ).

The local truncation error satisfies

y(x0 + h)− y1(h) = O(hp+1) if ψ(τ) = 1, ∀τ ∈ T, ρ(τ) ≤ p.

Thus we can conclude the section with the following result:

Theorem 3 A Runge-Kutta method applied to an ODE is of order p if and
only if

ψ(τ) = 1, ∀τ ∈ T, ρ(τ) ≤ p.

The if -part of the theorem is clear from the discussion above. The only if
comes from the fact that the elementary differentials are actually indepenent,
see [1], pp. 146-147.
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