
2 Some background on ODEs.

In this section some useful notation on ordinary differential equations will be presented. We
will also give existence and uniqueness results, but without proofs.

A system of m first order ordinary differential equation is given by

y′ = f(t, y) (4)

or, written out, as

y′1 = f1(t, y1, · · · , ym),

y′2 = f2(t, y1, · · · , ym),

...

y′m = fm(t, y1, · · · , ym).

This is an initial value problem (IVP) if the solution is given at some point t0, thus

y1(t0) = y1,0, y(t0) = y2,0, · · · ym(t0) = ym,0.

Example 2.1. The following equation is an example of the Lotka-Volterra equation:

y′1 = y1 − y1y2,

y′2 = y1y2 − 2y2.

An ODE is called autonomous if f is not a function of t, but only of y. The Lotka-
Volterra equation is an example of an autonomous ODE. A nonautonomous system can be
made autonomous by a simple trick, just add the equation

y′m+1 = 1, ym+1(t0) = t0,

and replace t with ym+1. Also higher order ODE/IVPs

u(m) = f(t, u, u′, · · · , u(m−1)), u(t0) = u0, u′(t0) = u′

0, · · · , u(m−1)(t0) = u
(m−1)
0 ,

where u(m) = dmu/dtm, can be written as a system of first order equations, again by a simple
trick: Let

y1 = u, y2 = u′, · · · ym = u(m−1),

and we get the system

y′1 = y2, y1(t0) = u0,

y′2 = y3, y2(t0) = u′

0,

...
...

y′m−1 = ym, ym−1(t0) = u
(m−2)
0 ,

y′m = f(t, y1, y2, · · · , ym), ym(t0) = u
(m−1)
0 .
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Example 2.2. Van der Pol’s equation is given by

u′′ + µ(u2 − 1)u′ + u = 0.

Using y1 = u and y2 = u′ this equation can be rewritten as

y′1 = y2,

y′2 = µ(1 − y2
1)y2 − y1.

This problem was first introduced by Van der Pol in 1926 in the study of an electronic oscillator.

Before concluding this section, we present some existence and uniqueness results for solu-
tion of ODEs.

Definition 2.3. A function f : R × R
m → R

m satisfies the Lipschitz condition with respect

to y on a domain (a, b) × D where D ⊂ R
m if there exist a constant L so that

‖f(t, y) − f(t, ỹ)‖ ≤ L‖y − ỹ‖, for all t ∈ (a, b), y, ỹ ∈ D.

The constant L is called the Lipschitz constant.

It is not hard to show that the function f satisfies the Lipschitz condition if ∂fi/∂yj , i, j =
1, · · · ,m are continuous and bounded on the domain.

Theorem 2.4. Consider the initial value problem

y′ = f(t, y), y(t0) = y0. (5)

If

1. f(t, y) is continuous in (a, b) × D,

2. f(t, y) satisfies the Lipschitz condition with respect to y in (a, b) × D.

with given initial values t0 ∈ (a, b) and y0 ∈ D, then (5) has one and only one solution in

(a, b) × D.

3 Numerical solution of ODEs.

In this section we develop some simple methods for the solution of initial value problems. In
both cases, let us assume that we somehow have found solutions yl ≈ y(tl), for l = 0, 1, · · · , n,
and we want to find an approximation yn+1 ≈ y(tn+1) where tn+1 = tn + h, where h is the
stepsize. Basically, there are two different classes of methods in practical use.

1. One-step methods. Only yn is used to find the approximation yn+1. One-step methods
usually require more than one function evaluation pr. step. They can all be put in a
general abstract form

yn+1 = yn + hΦ(tn, yn;h).

2. Linear multistep methods: yn+1 is approximated from yn−k+1, · · · , yn.

6



3.1 Some examples of one-step methods.

Assume that tn, yn is known. The exact solution y(tn+1) with tn+1 = tn + h of (4) passing
through this point is given by

y(tn + h) = yn +

∫ tn+1

tn

y′(τ)dτ = yn +

∫ tn+1

tn

f(τ, y(τ))dτ. (6)

The idea is to find approximations to the last integral. The simplest idea is to use f(τ, y(τ)) ≈
f(tn, yn), in which case we get the Euler method again:

yn+1 = yn + hf(tn, yn).

The integral can also be approximated by the trapezoidal rule

∫ tn+1

tn

f(τ, y(τ)) =
h

2
(f(tn, yn) + f(tn+1, y(tn+1)).

By replacing the unknown solution y(tn+1) by yn+1 we get the trapezoidal method

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) .

Here yn+1 is available by solving a (usually) nonlinear system of equations. Such methods are
called implicit. To avoid this extra difficulty, we could replace yn+1 on the right hand side by
the approximation from Eulers method, thus

ỹn+1 = yn + hf(tn, yn);

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, ỹn+1)) .

This method is called the improved Euler method. Similarly, we could have used the midpoint
rule for the integral,

∫ tn+1

tn

f(τ, y(τ)) =

(

f(tn +
h

2
, y(tn +

h

2
)

)

,

and replaced y(tn + h
2 ) by one half Euler step. The result is the modified Euler method :

ỹn+ 1

2

= yn +
h

2
f(tn, yn),

yn+1 = yn + hf(tn +
h

2
, ỹn+ 1

2

).

Do we gain anything by constructing these methods? Let us solve the problem from Example
1.1 using improved/modified Euler with h = 0.1. For each step, also the global error en =
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y(tn) − yn is computed. For comparison, also the result for the Euler method is included.

Euler improved Euler modified Euler
tn yn en yn en yn en

0.0 1.000000 0 1.000000 0 1.000000 0
0.1 1.000000 −9.95 · 10−3 0.990000 4.98 · 10−5 0.990000 4.98 · 10−5

0.2 0.980000 −1.92 · 10−2 0.960696 9.34 · 10−5 0.960597 1.92 · 10−4

0.3 0.940800 −2.69 · 10−2 0.913814 1.17 · 10−4 0.913528 4.03 · 10−4

0.4 0.884352 −3.22 · 10−2 0.852040 1.04 · 10−4 0.851499 6.45 · 10−4

0.5 0.813604 −3.48 · 10−2 0.778765 3.60 · 10−5 0.777930 8.71 · 10−4

0.6 0.732243 −3.46 · 10−2 0.697773 −9.69 · 10−5 0.696636 1.04 · 10−3

0.7 0.644374 −3.17 · 10−2 0.612924 −2.98 · 10−4 0.611507 1.12 · 10−3

0.8 0.554162 −2.69 · 10−2 0.527850 −5.58 · 10−4 0.526202 1.09 · 10−3

0.9 0.465496 −2.06 · 10−2 0.445717 −8.59 · 10−4 0.443904 9.54 · 10−4

1.0 0.381707 −1.38 · 10−2 0.369053 −1.17 · 10−3 0.367153 7.27 · 10−4

As we can see, there is a significant improvement in accuracy, compared with the Euler method.
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