
4.2 Error control and stepsize selection.

A user of some numerical black box software will usually require one thing: The accuracy of
the numerical solution should be within some user specified tolerance. To accomplish this we
have to measure the error, and if the error is too large, it has to be reduced. For ordinary
differential equations, this means to reduce the stepsize. On the other hand, we would like
our algorithm to be as efficient as possible, that is, to use large stepsizes. This leaves us with
two problems: How to measure the error, and how to get the right balance between accuracy
and efficiency.

Local error estimate. As demonstrated in Figure 1, the global error y(tn)−yn comes from
two sources: the local truncation error and the propagation of errors produced in preceding
steps. This makes it difficult (but not impossible) to measure the global error. Fortunately
it is surprisingly easy to measure the local error, ln+1, the error produced in one step when
starting at (tn, yn), see Figure 2. Let y(t; tn, yn) be the exact solution of the ODE through
the point tn, yn. For a method of order p we get

ln+1 = y(tn + h; tn, yn) − yn+1 = Ψ(tn, yn)hp+1 + O(hp+2),

where O(hp+1) refer to higher order terms 1 . The term Ψ(tn, yn)hp+1 is called the principal
error term, and we assume that this term is the dominating part of the error. This assumption
is true if the stepsize h is sufficiently small. Taking a step from the same point tn, yn with a
method of order p̂ = p + 1 gives a solution ŷn+1 with a local error satisfying

y(tn + h; tn, yn) − ŷn+1 = O(hp+2).

The local error estimate is given by

len+1 = ŷn+1 − yn+1 = Ψ(tn, yn)hp+1 + Ohp+2 ≈ ln+1.

Embedded Runge-Kutta pair Given a Runge-Kutta method of order p. To be able to
measure the local error, we need a method of order p + 1 (or higher). But we do not want
to spend more work (in terms of f -evaluations) than necessary. The solution is embedded

1Strictly speaking, the Landau-symbol O is defined by

f(x) = O(g(x)) for x → x0 if limx→x0

‖f(x)‖
‖g(x)‖

< K < ∞

for some unspecified constant K. Thus f(h) = O(hq) means that ‖f(h)‖ ≤ Khq when h → 0, and refer to the

remainder terms of a truncated series.

14

t
n

t
n+1

t
0

l
n+1

d
n+1

y
n+1

y
n

y(t
n
)

y(t
n+1

)

Figure 2: Lady Windermere’s Fan

Runge-Kutta pairs, which, for explicit methods are given by

0

c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1

b̂1 b̂2 · · · b̂s−1 b̂s

The method given by the bi’s is of order p, the error estimating method given by the b̂i’s is
of order p + 1. (Sometimes it is the other way round. The important thing is to have two
methods of different order.) The local error estimate of yn+1 is then given by

len+1 = ŷn+1 − yn+1 = h
s

∑

i=1

(b̂i − bi)ki.

Example 4.8. A combination of the Euler method and improved Euler will result in the

15

following pair

0

1 1

1

1

2

1

2

so that

k1 = f(tn, yn), k2 = f(tn + h, yn + hk1), yn+1 = yn + hk1, ln+1 ≈ len+1 =
h

2
(−k1 + k2).

Example 4.9. Assume that you have decided to use improved Euler, which is of order 2, as
your advancing method, and you would like to find an error estimating method of order 3.
There are no 2-stage order 3 ERKs, so you have to add one stage to your method. This gives
a method like

0

1 1

c3 a31 a32

1

2

1

2

b̂1 b̂2 b̂3

where we require c3 = a31 + a32, which give us five free parameters. These have to satisfy all
four order condition for an order 3 method. Using c3 as a free parameter, we get the following
class of 3th order methods:

b1 =
3c3 − 1

6c3

, b2 =
2 − 3c3

6(1 − c3)
, b3 =

1

6c3(1 − c3)
, a31 = c2

3, a31 = c3 − c2
3.

It is also possible to use the highest order method to advance the solution. In this case,
we still measure the local error estimate of the lowest order order solution, but we get a more
accurate numerical solution for free. This idea is called local extrapolation.

MATLAB has two integrators based on explicit Runge-Kutta schemes, ODE23 which is
based on an order 3/2 pair by Bogacki and Shampine, (a 3th order advancing and a 2nd order
error estimating method), and ODE45 based on an order 5/4 pair by Dormand and Prince.
Both use local extrapolation.

Stepsize control Let the user specify a tolerance Tol, and a norm ‖ · ‖ in which the error
is measured. Let us start with tn, yn, and do one step forward in time with a stepsize hn,
giving yn+1 and len+1. If ‖len+1‖ ≤ Tol the step is accepted, and we proceed till the next
step, maybe with an increased stepsize. If ‖len+1‖ > Tol the step is rejected and we try again
with a smaller stepsize. In both cases, we would like to find a stepsize hnew which gives a local
error estimate smaller than Tol, but at the same time as close to Tol as possible. To find the
right stepsize, we make one assumption: The function Ψ(tn, yn) of the principle error term do

16

not change much from one step to the next, thus ‖Ψ(tn, yn)‖ ≈ ‖Ψ(tn+1, yn+1)‖ ≈ C. Then

we have: ‖len+1‖ ≈ C · hp+1
n

we want: Tol ≈ C · hp+1
new

We get rid of the unknown C by dividing the two equations with each other, and hnew can be
solved from

‖len+1‖

Tol
≈

(

hn

hnew

)p+1

.

Rejected steps are wasted work, and it should be avoided. Thus we choose the new stepsize
somewhat conservative. The new stepsize is computed by

hnew = P ·

(

Tol

‖len+1‖

)
1

p+1

hn. (14)

where P is a pessimist factor, usually chosen somewhere in the interval [0.5,0.95]. In the
discussion so far we have used the requirement ‖len+1‖ ≤ Tol, that is error pr. step (EPS).
This do not take into account the fact that the smaller the step is, the more steps you take,
and the local errors from each step adds up. From this point of view, it would make sense to
rather use the requirement le‖n+1 ≤ Tol ·hn, that is error pr. unit step (EPUS). The stepsize
selection is then given by

hnew = P ·

(

Tol

‖len+1‖

)
1
p

hn. (15)

Careful analysis has proved that the local extrapolation together with EPS gives proportion-
ality between the global error and the tolerance. The same is true for the use of the lower
order method to advance the solution in combination with EPUS.

17

5 Stiff equations and linear stability

Example 5.1. Given the ODE

y′ = −1000y, y(0) = 1.

with exact solution
y(t) = e−1000t.

Thus y(t) → 0 as t → ∞. The Euler method applied to this problem yields

yn+1 = yn − 1000hyn = (1 − 1000h)yn.

so that yn = (1 − 1000h)n. This gives us two situations:

If |1 − 1000h| < 1 then yn → 0 as n → ∞.

If |1 − 1000h| > 1 then |yn| → ∞ as n → ∞

Clearly, the second situation do not make sense at all, as the numerical solution is unstable
even if the exact solution is stable. We have to choose a stepsize h < 0.002 to get a stable
numerical solution for this problem.

To be more general: Consider a linear ODE

y′ = My, y(0) = y0, (16)

where M is a constant, m × m matrix. We assume that M is diagonalizable, that is

V −1MV = Λ

where
Λ = diag{λ1, λ2, · · · , λm}, V = [v1, v2, · · · , vm],

where λi, i = 1, · · · , m are the eigenvalues of M and vi are the corresponding eigenvectors.
By premultiplying (16) with V −1, we get

V −1y′ = V −1MV V −1y, V −1y(t0) = V −1y0

or, using u = V −1y,
u′ = Λu, u(t0) = V −1y0 = u0.

The system is now decoupled, and can be written componentwise as

u′

i = λiui, ui(0) = ui,0, λi ∈ C, i = 1, · · · , m. (17)

We have to accept the possibility of complex eigenvalues, however, as M is a real matrix, then
complex eigenvalues appears in complex conjugate pairs. In the following, we will consider
the situation when

Re(λi) < 0 for i = 1, · · · , m, thus y(t) → 0 as t → ∞. (18)

18

Apply the Euler method to (16):

yn+1 = yn + hMyn.

We can do exactly the same linear transformations as above, so the system can be rewritten
as

ui,n+1 = (1 + hλi)ui,n, i = 1, · · · , m.

For the numerical solution to be stable, we have to require

|1 + hλi| ≤ 1, for all the eigenvalues λi. (19)

(The case |1+hλih| = 1 is included, as this is sufficient to prevent the solution from growing.)

Example 5.2. Given

y′ =





−2 1

998 −999



 y, y(0) =





1

1





with exact solution y1(t) = y2(t) = e−t. The matrix has eigenvalues −1 and −1000. The initial
values are chosen so that the fast decaying mode is missing in the exact solution. This problem
is solved by Eulers method, with two almost equal stepsizes, h = 0.0021 and h = 0.002. The
difference is striking, but completely in correspondence with (19) and the result of Example
5.1.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

so
lu

tio
n

Euler, h=0.002100

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

t

so
lu

tio
n

Euler, h=0.002000

The MATLAB-file linsys used to produce these plots are given on the web-page. Use it
to do your own experiments.

Example 5.2 is a typical example of a stiff equation. The stepsize is restricted by a fast
decaying component.

Example 5.3. Let

M =





−2 −2

1 0



 with eigenvalues λ1,2 = −1 ± i.

The requirement (19) becomes

|1 + h(−1 ± i)| ≤ 1 or (1 − h)2 + h2 ≤ 1 which is satisfied if and only if 0 ≤ h ≤ 1.

19

Stiffness occurs in situations with fast decaying solutions (transients) in combination with
slow solutions. If you solve an ODE by an adaptive explicit scheme, and the stepsize becomes
unreasonable small, stiffness is the most likely explanation. If the stepsizes in additions seems
to be independent of your choice of tolerances, then you can be quite sure. The stepsize is
restricted by stability related to the transients, and not by accuracy. The effect is demonstrated
in the MATLAB-file teststiffness available on the web page. The backward Euler method
is one way to overcome this problem:

yn+1 = yn + hf(tn+1, yn+1) (20)

or, applied to the problem of (17)

ui,n+1 = ui,n + hλui,n+1, ⇒ ui,n+1 =
1

1 − hλi

ui,n+1.

Since |1/(1−hλi)| ≤ 1 whenever Re(λi) ≤ 0 there is no stepsize restriction caused by stability
issues. In fact, ui,n+1 → 0 as Re(hλi) → −∞, so fast transients decay quickly, as they are
supposed to do. But this nice behaviour is not for free: for a nonlinear ODE a nonlinear
system of equations has to be solved for each step. We will return to this topic later.

Linear stability theory for Runge-Kutta methods.

Given the linear test equation
y′ = λy, λ ∈ C. (21)

Thus λ = α + iβ. The solution can be expressed by

y(tn + h) = eαheiβhy(tn).

Clearly, the solution is stable if α ≤ 0, that is λ ∈ C
−. For the numerical solution we then

require the stepsize h to be chosen so that

|yn+1| ≤ |yn| wheneverλ ∈ C
− (22)

When a RK method is applied (21), we simply get

yn+1 = R(z)yn, z = hλ

where R is a polynomial or a rational function. R is called the stability function of the RK
method. The numerical solution is stable if |R(z)| ≤ 1, otherwise it is unstable. This motivates
the following definition of the region of absolute stability as

D = {z ∈ C : |R(z)| ≤ 1}.

The condition (22) is satisfied for all h > 0 if

C
− ∈ D,

Methods satisfying this condition are called A-stable. The Backward Euler method (20) is an
example of an A-stable method.

20

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 1 p = s = 2

K3 K2 K1 0 1

K3

K2

K1

1

2

3

K3 K2 K1 0 1

K3

K2

K1

1

2

3

p = s = 3 p = s = 4

K1 0 1 2 3

K3

K2

K1

1

2

3

K1 0 1 2 3

K3

K2

K1

1

2

3

Backward Euler Trapezoidal rule

Figure 3: Stability regions in C
−: The first four are the stability regions for explicit RK

methods of order p = s. The white regions are stable, the grey unstable.

21

Example 5.4. A 2-stage ERK applied to (21) is given by:

k1 = λyn, k2 = λ(yn + ha21λyn), yn+1 = yn + hλ(b1 + b2)yn + (hλ)2b2a21yn

If this method is of order 2, then b1 + b2 = 1 and b2a21 = 1/2, so that

R(z) = 1 + z +
1

2
z2.

The stability function of an s-stage ERKs is a polynomial of degree s. As a consequence,
no ERKs can be A-stable! If the order of the method is s, then

R(z) =
s

∑

i=0

zi

i!
.

See Figure 3 for plots of the stability regions. But it has been proved that ERK with p = s
only exist for s ≤ 4. To get an order 5 ERK, 6 stages are needed.

Example 5.5. The trapezoidal rule (see section 3.1) applied to (21) gives

yn+1 = yn +
h

2
(λyn + λyn+1) ⇒ R(z) =

1 + z

1 − z
.

In this case D = C
−, which is perfect.

To summarise:

• For a given λ ∈ C
−, choose a stepsize h so that hλ ∈ D.

• If your problem is stiff, use an A-stable method.

• There are no A-stable explicit methods.

22

