
7 Linear multistep methods

A k-step linear multistep method (LMM) applied to the ODE

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend.

is given by
k

∑

l=0

αlyn+l = h

k
∑

l=0

βlfn+l, (26)

where αl, βl are the method coefficients, fj = f(tj, yj) and tj = t0 + jh, h = (tend− t0)/Nstep.
Usually we require

αk = 1 and |α0| + |β0| 6= 0.

To get started with a k-step method, we also need starting values yl ≈ y(tl), l = 0, 1, · · · , k−1.
A method is explicit if βk = 0, otherwise implicit. The leapfrog method

yn+2 − yn = 2hf(tn+1, yn+1) (27)

and the method given by

yn+2 − yn+1 = h

(

3

2
fn+1 −

1

2
fn

)

(28)

are both examples of explicit 2-step methods.

Example 7.1. Given the problem

y′ = −2ty, y(0) = 1

with exact solution y(t) = e−t2 . Let h = 0.1, and y1 = e−h2

. This problem is solved by (28),
and the numerical solution and the error is given by

tn yn |en|

0.0 1.000000 0.00
0.1 0.990050 0.00
0.2 0.960348 4.41 · 10−4

0.3 0.912628 1.30 · 10−3

0.4 0.849698 2.45 · 10−3

0.5 0.775113 3.69 · 10−3

0.6 0.692834 4.84 · 10−3

0.7 0.606880 5.75 · 10−3

0.8 0.521005 6.29 · 10−3

0.9 0.438445 6.41 · 10−3

1.0 0.361746 6.13 · 10−3

.

The corresponding MATLAB code is given in lmm.m.
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7.1 Consistency and order.

We define the local discretization error τn+k(h) by

hτn+k(h) =
k

∑

l=0

(

αly(tn+l) − hβly
′(tn+l)

)

. (29)

You can think about the hτn+k as the defect obtained when plugging the exact solution into
the difference equation (26). A method is consistent if τn+k(h) →

h→0
0. The term hτn+k(h) can

be written as a power series in h

hτn+k(h) = C0y(tn) + C1hy
′(tn) + C2h

2y′′(tn) + · · · + Cqh
qy(q)(tn) + · · · ,

by expanding y(tn + lh) and y′(tn + lh) into their Taylor series around tn,

y(tn + lh) = y(tn) + (lh)y′(tn) +
1

2
(lh)2y′′(tn) + · · · +

(lh)q

q!
y(q)(tn) + · · ·

y′(tn + lh) = y′(tn) + (lh)y′′(tn) +
1

2
(lh)2y′′′(tn) + · · · +

(lh)q−1

q − 1!
y(q)(tn) + · · ·

for sufficiently differentiable solutions y(t). Insert this into (29), get the following expressions
for Cq:

C0 =
k

∑

l=0

αl, Cq =
1

q!

k
∑

l=0

(

lqαl − qlq−1βl

)

, q = 1, 2, · · · . (30)

The method is consistent if C0 = C1 = 0. It is of order p if

C0 = C1 = · · · = Cp = 0, Cp+1 6= 0.

The constant Cp+1 is called the error constant.

Example 7.2. The LMM (28) is defined by

α0 = 0, α1 = −1, α2 = 1, β0 = −
1

2
, β1 =

3

2
, β2 = 0,

thus

C0 = α0 + α1 + α2 = 0.

C1 = α1 + 2α2 − (β0 + β1 + β2) = 0

C2 =
1

2!

(

α1 + 22α2 − 2(β1 + 2β2)
)

= 0

C3 =
1

3!

(

α1 + 23α2 − 3(β1 + 22β2)
)

=
5

12
.

The method is consistent and of order 2.

Example 7.3. Is it possible to construct an explicit 2-step method of order 3? There are 4
free coefficients α0, α1, β0, β1, and 4 order conditions to be solved (C0 = C1 = C2 = C3 = 0).
The solution is

α0 = −5, α1 = 4, β0 = 2, β1 = 4.

Test this method on the ODE of Example 2.1. (Replace the method coefficients in lmm.m.) The
result is nothing but disastrous. Taking smaller steps only increase the problem.

To see why, you have to know a bit about how to solve difference equations.
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7.2 Linear difference equations

A linear difference equation with constant coefficients is given by

k
∑

l=0

αlyn+l = ϕn, n = 0, 1, 2, · · · . (31)

The solution of this equation is a sequence {yn} of numbers (or vectors). Let {yn} be the
general solution of the homogeneous problem

k
∑

l=0

αlyn+l = 0. (32)

Let ψn be one particular solution of (31). The general solution of (31) is then {yn} where
yn = ỹn + ψn. To find a unique solution, we will need the starting values y0, y1, · · · , yk−1.

Let us try ỹn = rn as a solution of the homogeneous equation (32). This is true if

k
∑

l=0

αlr
n+l = rn

k
∑

l=0

αlr
l = 0.

The polynomial ρ(r) =
∑k

l=0 αlr
l is called the characteristic polynomial, and {rn} is a solu-

tion of (32) if r is a root of ρ(r). The kth degree polynomial ρ(r) has k roots altogether,
r1, r2, · · · , rk, they can be distinct and real, they can be distinct and complex, in which case
they appear in complex conjugate pairs, or they can be multiple. In the latter case, say
r1 = r2 = · · · = rµ we get a set of linear independent solutions {rn

1 }, {nr
n
1 }, · · · , {n

µ−1rn
1 }.

Altogether we have found k linear independent solutions {ỹn,l} of the homogeneous equation,
and the general solution is given by

yn =
k

∑

l=1

κlỹn,l + ψn.

The coefficients κl can be determined from the starting values.

Example 7.4. Given

yn+4 − 6yn+3 + 14yn+2 − 16yn+1 + 8yn = n

y0 = 1, y1 = 2, y2 = 3 y3 = 4.

The characteristic polynomial is given by

ρ(r) = r4 − 6r3 + 14r2 − 16r + 8

with roots r1 = r2 = 2, r3 = 1 + i, r4 = 1 − i. As a particular solution we try ψn = an + b.
Inserted into the difference equation we find this to be a solution if a = 1, b = 2. The general
solution has the form

yn = κ12
n + κ2n2n + κ3(1 + i)n + κ4(1 − i)n + n+ 2.
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From the starting values we find that κ1 = −1, κ2 = 1
4 , κ3 = −i/4 and κ4 = i/4. So, the

solution of the problem is

yn = 2n
(n

4
− 1

)

−
i(1 + i)n

4
+
i(1 − i)n

4
+ n+ 2

= 2n
(n

4
− 1

)

− 2
n−2

2 sin
(nπ

4

)

+ n+ 2.

Example 7.5. The homogeneous part of the difference equation of Example 5.2 is

ρ(r) = r2 + 4r − 5 = (r − 1)(r + 5).

One root is 5. Thus, one solution component is multiplied by a factor -5 for each step, inde-
pendent of the stepsize. Which explain why this method fails.

7.3 Zero-stability and convergence

Let us start with the definition of convergence. As before, we consider the error at tend, using
Nstep steps with constant stepsize h = (tend − t0)/Nstep.

Definition 7.6.

• A linear multistep method (26) is convergent if, for all ODEs satisfying the conditions
of Theorem 2.4 we get

yNstep →
h→0

y(tend), whenever yl →
h→0

y(t0 + lh), l = 0, 1, · · · , k − 1.

• The method is convergent of order p if, for all ODEs with f sufficiently differentiable,
there exists a positive h0 such that for all h < h0

‖y(tend−yNstep‖ ≤ Khp whenever ‖y(t0+ lh)−yl‖ ≤ K0h
p, l = 0, 1, · · · , k−1.

The first characteristic polynomial of an LMM (26) is

ρ(r) =
k

∑

l=0

αlr
l,

with roots r1, r2, · · · , rk. From the section on difference equation, it follows that for the
boundedness of the solution yn we require:

1. |ri| ≤ 1, for i = 1, 2, · · · , k.

2. |ri| < 1 if ri is a multiple root.

A method satisfying these two conditions is called zero-stable.
We can now state (without proof) the following important result:

Theorem 7.7. (Dahlquist)

Convergence ⇔ Zero-stability + Consistency.
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For a consistent method, C0 =
∑k

l=0 αl = 0 so the characteristic polynomial ρ(r) will
always have one root r1 = 1.

The zero-stability requirement puts a severe restriction on the maximum order of a con-
vergent k-step method:

Theorem 7.8. (The first Dahlquist-barrier) The order p of a zero-stable k-step method satis-
fies

p ≤ k + 2 if k is even,

p ≤ k + 1 if k is odd,

p ≤ k if βk ≤ 0.

Notice that the last line include all explicit LMMs.
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