7.4 Adams-Bashforth-Moulton methods

The most famous linear multistep methods are constructed by the means of interpolation. For
instance by the following strategy:
The solution of the ODE satisfy the integral equation

Yltns1) — y(tn) = / " Fty ). (33)

Assume that we have found f; = f(t;,y;) fori =n—k+1,--- ,n, with ¢; = to+th. Construct
the polynomial of degree k — 1, satisfying

pkfl(tz):f(thyl% Z:n—k—i-l,,n

The interpolation points are equidistributed (constant stepsize), so Newton’s backward differ-
ence formula can be used in this case (see Exercise 2), that is
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where
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Using Yn+1 = Y(tnt+1)- Yn = y(ty) and pr_1(t) = f(t,y(t)) in (33) gives

tn+1 1
Yn+1 — yn/ pr—1(t)dt = h/ Pr—1(tn + sh)ds
tn 0

= hfo + hj: ((—1)1 /01 <_18> ds> Vif,. (34)

This gives the Adams-Bashforth methods

k-1
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Example 7.9. We get
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and the first few methods becomes:
Ynt1 = Yn = hfn
3 1
n —Yn = hi= n — 5Jn—
Ynt1 — Y <2f 5/ 1)

23 4 5
Yn+1 — Yn = h <Efn - gfn—l + Efn—l)
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A k-step Adams-Bashforth method is explicit, has order k (which is the optimal order for
explicit methods) and it is zero-stable. In addition, the error constant Cpq = 7. Implicit
Adams methods are constructed similarly, but in this case we include the (unknown) point
(tn+1, fn+1) into the set of interpolation points. So the polynomial

—s+1

j )vjf"H

k
P(t) = Di(tn + 5h) = furr + 3 (1) (
j=1

interpolates the points (¢;, f;), i =n—k+1,...,n+ 1. Using this, we get the Adams-Moulton
methods
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Example 7.10. We get

and the first methods becomes

Yn+1 = Yn = hfnt1 (Backward Euler)

1 1

Yntl —Yn =N <§fn+1 + §fn> (Trapezoidal method)
5) 2 1

Yn+1 — Yn = h <Efn+1 + gfn - Efnl) .

A k-step Adams-Moulton method is implicit, of order k + 1 and is zero-stable. The error
constant Cp11 = ;. Despite the fact that the Adams-Moulton methods are implicit, they
have some advantages compared to their explicit counterparts: They are of one order higher,
the error constants are much smaller, and the linear stability properties (when the methods
are applied to the linear test problem ¢y’ = \y) are much better.

k10 1 2 3 4 5 6
1 1 5 3 251 95 19087
Tk 2 12 8 720 288 60480
* 09 L _ 1 1 19 3 _ 863
Yk 2 12 24 720 160 60430

Table 1: The +’s for the Adams methods.

7.5 Predictor-corrector methods

A predictor-corrector (PC) pair is a pair of one explicit (predictor) and one implicit (corrector)
methods. The nonlinear equations from the application of the implicit method are solved by
a fixed number of fixed point iterations, using the solution by the explicit method as starting
values for the iterations.
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Example 7.11. We may construct a PC method from a second order Adams-Bashforth scheme
and the trapezoidal Tule as follows:

h

yr[?—]i—l =Yn + 5(3fn — fn-1) (P : Predictor)
forl=0,1,...,m

fr[ﬂq = f(thrl,yﬂq) (E : Evaluation)

h

y,[iﬁ] =yn + E(f,[@llq + fn) (C : Corrector)
end

_,ml
fot1 = f(tns1, Ynt1)- (E : Evaluation)

Such schemes are commonly referred as P(EC)™E schemes.
The predictor and the corrector is often by the same order, in which case only one or two
iterations are needed.
Error estimation in predictor-corrector methods.
The local discretization error of some LMM is given by

k

hTni1 = Z(Oély(tn—kﬂﬂ = hBY (tn—rs141)) = PP Cppny P (tn_pyr) + O(RPH).
=0

But we can do the Taylor expansions of y and y’ around ¢, rather than ¢, 1. This will not
alter the principal error term, but the terms hidden in the expression O(hP*2) will change.
As a consequence, we get

hTng1 = Cpry P (t,) + O(WPT2),
Assume that y; = y(t;) fori=n—k+1,...,n, and oy = 1. Then
Wit = Y(tni1) = Y1 + O(WP2) = WPHCH 1y (1) + O(WPF2).

Assume that we have chosen a predictor-corrector pair, using methods of the same order p.
Then

(P) Y(tni1) — yioyy ~ WPHLOYL 4D ),
(C) y(thrl) —Yn+1 = thrleJrly(erl)(tn),

and o .
Yt — yohy = WPHHCN — Gy (1),

From this we get the following local error estimate for the corrector, called Milne’s device:

Cpt

(g — %)
Cp-{—l} - Cp+1

Y(tnt1) = Ynp1 =
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Example 7.12. Consider the PC-scheme of Example 7.11. In this case

o _ 5 1 Cp+1

= — C = —— _— =
P+l T 197 pl 12’ 0]
Cly = Cop

=

Apply the scheme to the linear test problem

using yo = 1, y1 = e " and h = 0.1. One step of the PC-method gives

l l l l
1ol lyo — 3| [ 19(0.2) — ] | Llyi) — 4L

00819112 | 4.49-10~*| 3.81-10~*
1/0.818640 | 2.25-107° | 9.08-107> | 7.86-107°
210.818664 [ 1.12-107% | 6.72-107° | 7.47-107°
310.818662 | 5.62-1078 | 6.84-107° | 7.49.107°

After 1-2 iterations, the iteration error is much smaller than the local error, and we also
observe that Milne’s device gives a reasonable approzimation to the error.

Remark Predictor-corrector methods are not suited for stiff problems. You can see this
by e.g. using the trapezoidal rule on 3y = \y. The trapezoidal rule has excellent stability
properties. But the iteration scheme

h
gl — g, + §>\(y,[1”+1 — Yn)

will only converge if |hA/2| < 1.
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