Solution of systems of nonlinear equations

Given a system of nonlinear equations
F(z) =0, F:R™ —R™ (1)

for which we assume that there is (at least) one solution z*. The idea is to rewrite this
system into the form
r = G(x), G:R™ — R™ (2)

The solution z* of (1) should satisfy x* = G(z*), and is thus called a fized point of
G. The iteration schemes becomes: given an initial guess z(*), the fized point iterations
becomes

e* D) — gy, k=1,2,.... (3)
The following questions arise:
(i) How to find a suitable function G?

(ii) Under what conditions will the sequence
(iii) How quickly will the sequence z*) converge?

k) converge to the fixed point z*?

Point (ii) can be answered by Banach fixed point theorem:

Theorem 1. Let D C R™ be a convex' and closed set. If
G(D)C D (4a)
and

IG(y) — G(v)|| < Ly — ||, with L < 1 for all y,v € D, (4b)

then G has a unique fized point in D and the fixed point iterations (3) converges for all

z©) e D. Further,
k

lz® — || <

< 2 - 2O, (40)

Proof. The proof is based on the Cauchy Convergence theorem, saying that a sequence
{m(k)}?’:o converges to some z* if and only if for every € > 0 there is an IV such that
|z —2®| <&  forall I,k>N. (5)

Assumption (4a) ensures z*) € D as long as 2() € D. From (3) and (4b) we get:

24D — 28] = Ga) - GtV < Lja® — 2*V] < L¥al - 2O,

'D is convex if Oy + (1 — 0)v € D for all y,v € D and 6 € [0, 1].



We can write 2(F+P) — 2(k) = S0 (k) _ p(k+i-1)) “thus

p
Hx (k+p) Z (k+i) _ k+z 1)H

k

= (LP 4 LP 2 1)) — W) < : L 7 [z — 2O,

since L < 1. For the same reason, the sequence satisfy (5), so the sequence converges to
some z* € D. Since the inequality is true for all p > 0 it is also true for z*, proving (4c).

To prove that the fixed point is unique, let * and y* be two different fixed points in D.
Then

" =yl = [|G(2") = Gyl < [l2" = 7|

which is impossible. O

For a given problem, it is not necessarily straightforward to justify the two assumptions
of the theorem. But it is sufficient to find some L satisfying the condition L < 1 in some
norm to prove convergence.

Let = [z1,...,2,])7 and G(z) = [g1(2),...,9m(2)]". Let y,v € D, and let z(0) =
Oy + (1 —0)v be the straight line between y and v. The mean value theorem for functions
gives

dg; ~
6i) ~ 0i(0) = ai(a() — 0x(0) = L@ -0).  Fe©)
99i - - .
Z&i yj — vj5), Z;i=0y+ (1—-0)w
J
since dx;j(0)/df = y; — vj. Then

~ 9gi - —, 9gi .

19i() = gi()| < 3|5 (@)l -y — vl < | D015 (@) | maxly — vil.
= Ox; = Ox; !

If we let g;; be some upper bound for each of the partial derivatives, that is

a’Ej

()| < gij, forallz e D.
then
m
lg(w) = 9(0)lleo = | max}y g | Iy — vlloc-

j=1
We can then conclude that (4b) is satisfied if

m
max gii < 1.
: Z;gu
J:



Newton’s method

Newton’s method is a fixed point iterations for which
G(a™) = z® — J(@) =1 pzR),

where the Jacobian is the matrix function

rt CONERI el )
J(x) = : :
Hr@) o Fm@)

It is possible to prove that if i) (1) has a solution z*, i) J(x) is nonsingular in some
open neighbourhood around z* and i) the initial guess 2 is sufficiently close to z*,
the Newton iterations will converge to z* and

lz* — 2@ V|| < Kla* — 2™ ?

for some positive constant K. We say that the convergence is quadratic.

Steepest descent

Steepest descent is an algorithm that search for a (local) minimum of a given function
g @ R™ — R. The idea is as follows.

a) Given some point x € R™.

b) Find the direction of steepest decline of ¢g from z (steepest descent direction)

c) Walk steady in this direction till g starts to increase again.
)

d) Repeat from a).

The direction of steepest descent is —Vg(z), where the gradient Vg is given by
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..,8$m

And the steepest descent algorithm reads

function STEEPEST DESCENT(g, ()
for k=0,1,2,.... do
z=—=Vg(x®)/||Vg(z®))| > The steepest descent direction.
Minimize g(z® + az), giving o = o*.
241 — 2() 4 g%y

end for



end function

This algorithm will always converge to some point z* in which Vg(z*) = 0, usually a
local minimum, if one exist. But the convergence can be very slow.

This can be used to find solution of the nonlinear system of equations (1) by defining
g(x) = F(x)TF(x) = ||F ()3

Thus, z* is a minimum of g(z) if and only if z* is a solution of F(z) = 0. In this case,
we can show that
Vg(z) = 2J(z) F(x).



