TMA4215 Numerical Mathematics

Autumn 2009

Exercise 5

Task 1

Kutta's method from 1901 is the most famous of all explicit Runge–Kutta pairs, given by the following Butcher tableau:

- a) Verify that the method has order 4 by checking all 8 order conditions.
- b) An alluring thought is to now find a new set of weights, say \hat{b}_s such that the accompanying method is of order 3, for error estimates and step length control. Try to find such a set of \hat{b}_s .

Task 2

- a) Show that an explicit Runge–Kutta method with s stages maximally can be of order s. (Hint: Use y' = y, $y(0) = y_0$ as test equation.)
- b) Show that an explicit 3rd order Runge–Kutta method with 3 stages must satisfy

$$3a_{32}c_2^2 - 2a_{32}c_2 - c_2c_3 + c_3^2 = 0.$$

- c) Characterise all 3rd order explicit Runge–Kutta methods with 3 stages that satisfy $a_{31} = 0$, i.e. $a_{32} = c_3$. How many free parameters are there?
- d) Find all explicit methods of order 2 that have the same coefficients a_{ij} as the method above, and weights that simultaneously satisfy $\hat{b}_3 = 0$.

Task 3

Implement an adaptive Runge–Kutta method based on the Bogacki–Shampine pair:

0				
1/2	1/2			
3/4	0	3/4		
1	2/9	1/3	4/9	
	2/9	1/3	4/9	0
	7/24	1/4	1/3	1/8

Use pessimist factor P = 0.9.

Test your program on the Lotka–Volterra equation (see note). Plot the solution and the step lengths h_n . Does h_n vary as expected?

Relevant exam problems:

- December 2003, problem 1,
- August 2005, problem 3,
- December 2006, problem 3,
- December 2008, problem 4.