EXAM IN NUMERICAL MATHEMATICS (TMA4215)

10. December 2006

Time: 09:00-13:00, Grades due: 15.08.2006
Permitted aids: Cathegory B, all written aids permitted.
Simple calculator with empty memory allowed.

Problem 1 Calculate

$$
\int_{-1}^{1} \frac{e^{x} d x}{\sqrt{1-x^{2}}}
$$

with atleast 4 significant digits (note the given formulas).
Answer: We can use Gauss-Chebyshev quadrature with $f(x)=e^{x}$, which yields $f^{(k)}(x)=e^{x}$ for all k and thus that $\left|f^{(2 n)}(\xi)\right| \leq e$ for all k. Hence we can give a table listing the error for each n.

n	1	2	3	4	5	6	7
error	2.13	0.04	$0.37 \cdot 10^{-3}$	$0.16 \cdot 10^{-5}$	$0.45 \cdot 10^{-8}$	$0.87 \cdot 10^{-11}$	$0.11 \cdot 10^{-13}$

We see that Q_{4} is enough. We have $Q_{4}(f)=3.9775$.

$$
Q_{4}(f)=\frac{\pi}{4}\left(\exp \left(-\cos \left(\frac{\pi}{8}\right)\right)+\exp \left(-\cos \left(\frac{3 \pi}{8}\right)\right)+\exp \left(\cos \left(\frac{3 \pi}{8}\right)\right)+\exp \left(\cos \left(\frac{\pi}{8}\right)\right)\right)
$$

Problem 2 The Van der Pol oscillator can be modelled by the initial value problem

$$
\begin{equation*}
u^{\prime \prime}+\alpha\left(u^{2}-1\right) u^{\prime}+u=0, \quad u(0)=u_{0}, u^{\prime}(0)=v_{0} \tag{1}
\end{equation*}
$$

The method backward Euler (reluE) for the problem $y^{\prime}=f(y)$ is given as

$$
\begin{equation*}
y_{m+1}=y_{m}+h f\left(y_{m+1}\right) \tag{2}
\end{equation*}
$$

where h is the step size.
a) Show that (2) applied to (1) leads to the following equation to be solved (with respect to u) for $u_{1} \approx u(h)$:

$$
\begin{equation*}
\alpha h u^{3}-\alpha h u_{0} u^{2}+\left(1-\alpha h+h^{2}\right) u-u_{0}(1-h \alpha)-h v_{0}=0 \tag{3}
\end{equation*}
$$

Answer: First we have to state the problem as a system of first order equations, $u^{\prime}=v$ and $v^{\prime}=$ $-\alpha\left(u^{2}-1\right) v-u$. If we write v for v_{1} and u for u_{1} we get

$$
u=u_{0}+h v, \quad v=v_{0}-\alpha h\left(u^{2}-1\right) v-h u
$$

We now insert $v=\left(u-u_{0}\right) / h$ into the second of these equations and end up with the given answer.
b) Now let $\alpha=5, h=0.1, u_{0}=2, v_{0}=0$, and find u_{1} with atleast 6 significant digits.

Answer: Newton's method with an intial guess $u^{(0)}=u_{0}=2$ is the best way to solve this. We start by inserting $\alpha=5, u_{0}=2, v_{0}=0$, and $h=0.1$ which leads to

$$
F(u)=0.5 u^{3}-u^{2}+0.51 u-1=0 \quad \Rightarrow \quad F^{\prime}(u)=1.5 u^{2}-2 u+0.51 .
$$

We calculate $u^{(k+1)}=u^{(k)}-F\left(u^{(k)}\right) / F^{\prime}\left(u^{(k)}\right.$ which gives the table below.

k	$u^{(k)}$	$F\left(u^{(k)}\right)$	$F^{\prime}\left(u^{(k)}\right)$
0	2.000000	0.02	2.51
1	1.992032	$0.126729 \cdot 10^{-3}$	2.478222
2	1.991980	$0.519868 \cdot 10^{-8}$	2.478019
3	1.991980	$0.874959 \cdot 10^{-17}$	2.478019

We conclude that $u_{2}=1.991980$ is correct to atleast 6 digits.
c) Find a polynomial $p(x)$ of degree at most 3 which satisfies

$$
p(0)=2, p^{\prime}(0)=0, p(h)=u^{*}, p^{\prime}(h)=\left(u^{*}-2\right) / h,
$$

where h and u^{*} are arbitrary parameters. Then use these to approximate $u(0.05)$ for the Van der Pol oscillator with u_{0}, v_{0} and α as in the previous task.
Answer: There are several ways to attack this problem. For instance we can use generalized divided differences. From the left end point we can immediately see that

$$
p(\theta h)=2+a \theta^{3}+b \theta^{2} \quad \Rightarrow \quad p^{\prime}(\theta h)=\frac{1}{h}\left(3 a \theta^{2}+2 b \theta\right)
$$

Now; $p(h)=2+a+b=u^{*}$ and $p^{\prime}(h)=\frac{1}{h}(3 a+2 b)=\frac{1}{h}\left(u^{*}-2\right)$. Hence we have that $a=2-u^{*}$ and $b=2\left(u^{*}-2\right)$, that is

$$
p(\theta h)=2+\left(2-u^{*}\right) \theta^{3}+2\left(u^{*}-2\right) \theta^{2} .
$$

We can approximate $u(0.05)$ from earlier by using $\theta=\frac{1}{2}, h=0.1$, and $u^{*}=u_{1} p(0.05)=2+(2-$ $\left.u_{1}\right) / 8+2\left(u_{1}-2\right) / 4=1.25+0.375 u_{1}=1.996992$.

Problem 3 The tip of a robotic arm moves along a path in the $x y$-plane which can be described by a parabola-like $\operatorname{graph}(x, f(x))$, that is $f(x)$ can be approximated well by a 2 . degree polynomial $p(x)$. The following have been observed.

x_{m}	-1.0	-0.6	-0.2	0.2	0.6	1.0
y_{m}	$-8.7065 \mathrm{e}-03$	$3.2370 \mathrm{e}-01$	$9.4428 \mathrm{e}-01$	1.2189	1.1431	1.0584

You can assume that the x-values are exact, while there is some uncertainty in the y-values.
a) Find $p(x) \in \Pi_{2}$ which minimizes the sum of squares

$$
E[p]=\sum_{m=1}^{6}\left(y_{m}-p\left(x_{m}\right)\right)^{2}
$$

Answer:

We state the normal equations by letting $\phi_{k}(x)=x^{k-1}, k=1,2,3$, and defining the 6×3-matrix Φ by $\Phi_{m, k}=\phi_{k}\left(x_{m}\right)$. We now consider $\Phi^{T} \Phi c=\Phi^{T} y$
$\left[\begin{array}{ccc}6 & 0 & 2.8 \\ 0 & 2.8 & 0 \\ 2.8 & 0 & 2.2624\end{array}\right] \cdot c=\left[\begin{array}{c}4.6797 \\ 1.6137 \\ 1.6643\end{array}\right] \Rightarrow c=\left[\begin{array}{c}1.0336 \\ 0.5763 \\ -0.5436\end{array}\right]$
Hence $p(x)=1.0336+0.5763 x-0.5436 x^{2}$.

b) We suspect that two of the data points are rather inexact, namely the second ($-0.6,3.2370 \mathrm{e}-01$), and the fourth $(0.2,1.2189)$. We want to give these a somewhat reduced weight in the sum of square, which leads us to defining

$$
E_{w}[p]=\sum_{m=1}^{6} w_{m}\left(y_{m}-p\left(x_{m}\right)\right)^{2} .
$$

We now let $w_{1}=w_{3}=w_{5}=w_{6}=1$ and $w_{2}=w_{4}=\frac{1}{2}$. We can define an inner product on \mathbf{R}^{6} by

$$
\langle u, v\rangle_{w}=\sum_{m=1}^{6} w_{m} u_{m} v_{m}
$$

To a polynomial $\phi \in \Pi_{2}$ we associate the vector $\bar{\phi}=\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{6}\right)\right]^{T} \in \mathbf{R}^{6}$. It turns out that the three polynomials

$$
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=x-\frac{1}{25}, \quad \phi_{2}(x)=x^{2}-\frac{13}{25}
$$

satisfies $\left\langle\bar{\phi}_{k}, \bar{\phi}_{\ell}\right\rangle_{w}=0$ when $k \neq \ell$. Use this (without proving it) to find $q \in \Pi_{2}$ which minimizes $E_{w}[q]$.

Answer: $>$ From the orthogonality principle we get that the sought polynomial $p(x)=c_{0} \phi_{0}(x)+$ $c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x) \in \Pi_{2}$ satisfies the normal equations

$$
\sum_{\ell=0}^{2} c_{\ell}\left\langle\bar{\phi}_{\ell}, \bar{\phi}_{k}\right\rangle_{w}=\left\langle y, \bar{\phi}_{k}\right\rangle_{w}, \quad k=0,1,2
$$

The fact that $\left\langle\bar{\phi}_{k}, \bar{\phi}_{\ell}\right\rangle_{w}=0$ when $k \neq \ell$, then leads to the rather simple solution

$$
c_{\ell}=\frac{\left\langle y, \bar{\phi}_{\ell}\right\rangle_{w}}{\left\langle\bar{\phi}_{\ell}, \bar{\phi}_{\ell}\right\rangle_{w}},
$$

$$
\text { that is } \quad c_{0}=0.7818, \quad c_{1}=0.5527, c_{2}=-0.5335
$$

If we now state $p(x)$ on canonical form, we have

$$
p(x)=-0.5335 x^{2}+0.5527 x+1.0370
$$

Some useful formulas

1. Chebyshev-quadrature

$$
\begin{gathered}
I(f)=\int_{-1}^{1} \frac{f(x) d x}{\sqrt{1-x^{2}}} \approx Q_{n}(f)=\sum_{k=1}^{n} c_{n, k} f\left(x_{n, k}\right) \\
c_{n, k}=\frac{\pi}{n} \\
x_{n, k}=\cos \frac{2 k-2 n-1}{2 n} \pi
\end{gathered}, \quad k=1, \ldots, n .
$$

2. Error in Chebyshev-quadrature

$$
I(f)-Q_{n}(f)=\frac{\pi}{(2 n)!2^{2 n-1}} f^{(2 n)}(\xi), \quad-1<\xi<1
$$

