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Contact during exam::
Name: Arne Morten Kvarving tel: 97544792

EXAM IN NUMERICAL MATHEMATICS (TMA4215)

Thursdag 14. Desember 2006
Time: 15:00–19:00, Grades due: 04.01.2007

Permitted aids: Cathegory B, all written aids permitted.
Simple calculator with empty memory allowed.

Problem 1 You are given the function

f(x) =
cosx

coshx
(where coshx =

ex + e−x

2
)

In the rest of this task you can assume that for all m ∈ N we have

max
0≤x≤1

|f (m)(x)| ≤Mm der Mm = m! · 3 · 1.55−m

Every positive integer n define n+ 1 abscissa (Chebyshev-points relative to [0, 1])

xn,k = sin2 (2k + 1)π

4(n+ 1)
, k = 0, . . . , n

a) Find the polynomial of degree 2 which interpolates f(x) in the abscissas x2,0, x2,1, x2,2.
State your answer on the form p2(x) = a0 + a1 x+ a2 x

2.

Answer: We first find the three absciassas
1
2
− 1

4

√
3 ≈ 0.066987,

1
2

= 0.5,
1
2

+
1
4

√
3 ≈ 0.93301.

You can use the algorithm of your preference, they all lead to the answer

p2(x) := 1.015260568− 0.266903474x− 0.4142081736x2
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b) Now assume that we want to make sure that the maximal interpolation error in the
interval [0, 1] is at most 10−6 using the abscissas we found above. Find the smallest
possible value of n which makes this possible.

Answer: Here it is important to note that the abscissas utilitzed are Chebyshev points relative to
[0, 1], that is the given xn,k are the roots of the polynomial Tn+1(2x− 1). We use the bound

f(x)− pn(x) =
f (n+1)(ξ)
(n+ 1)!)

n∏
k=0

(x− xn,k)

Thus the product on the right hand side needs to be a constant multiplied with the polynomial Tn+1(2x−
1). We recall that Tn+1(y) = 2nyn+1 + · · · , hence

Tn+1(2x− 1) = 2n(2x− 1)n+1 + · · · = 22n+1xn+1 + · · ·

so the leading coefficient is 22n+1. This means that the product given above is given by 2−2n−1 Tn+1(2x−
1) and the maximal value of this on the interval [0, 1] is 2−2n−1.

We now use the given bound for |f (m)(x)| on [0, 1] with m = n+ 1 which yields

max
0≤x≤1

|f(x)− pn(x)| ≤ 3 · 1.55−n−1 · 2−2n−1

To have a maximal error of at most ε we need

3 · 1.55−n−1 · 2−2n−1 ≤ ε.

If we now take the logarithm (a monotone increasing function for positive arguments) on both sides and
solve with respect to n;

n ≥ 0.55 · ln
(

0.97
ε

)
.

Since this is not an integer in general, we have to round up to the closest integer. With ε = 10−6 we
find n = 8 after rounding. Note! If you had used “unscaled” Chebyshev polynomials you would end up
with n = 13.

c) Calculate the value of the integral ∫ 1

0

cosx

coshx
dx

with an error which is guaranteed to be less than 10−4. Justify your answer and your
solution strategy.

Answer: Here you are free to use any method you like. However note the way the task is formulated,
we cannot simply use an error estimate, we need to use an error bound. This is not very involved here
since we have been given bounds for the m’th derivative. We here use Simpson’s rule. Basically we have
to decide how many subintervals we need. The error bound for (composite) Simpson’s rule is given in
the book,

|I(f)− Sn(f)| ≤ 1
180

h4 max
0≤x≤1

|f (4)(x)|.
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Inserting the given bounds leads to 0.07h4 ≤ 10−4 which yields approximately h ≈ 0.195. Hence we
need to use atleast n = 6 subintervals (recall that n needs to be even). Using h = 1/6 we get

S6(f) =
h

3
(f(0) + 4f(

1
6
) + 2f(

1
3
) + 4f(

1
2
) + 2f(

2
3
) + 4f(

5
6
) + f(1)) ≈ 0.7437

The equivalent bounds for the trapezoidal rule and the midpoint rule would have given 46 and 34
subintervals respectively, which probably is a bit too much work on an exam.

Problem 2 In this exercise we study the formula

Nh(f)(x) =
1

h3

(
−1

2
f(x− 2h) + f(x− h)− f(x+ h) +

1

2
f(x+ 2h)

)
(1)

used to approximate f (3)(x) (the third derivative of f) for a smooth function f .

a) Test the formula on f(x) = sin x with x = 0 and h = 0.1.
Answer: We can use the fact that sin(x) is odd

Nh(sin)(x) = 0.1−3(sin(0.2)− 2 sin 0.1) ≈ −0.9975

Note that the exact answer is − cos 0 = −1.

b) Show that
Nh(f)(x) = f (3)(x) +K2h

2 +K4h
4 + · · · ,

that is, only even powers of h. Also find an expression for K2.
Answer: One can argue for the even expansion by pointing out, then utilizing, the fact that N−h(f) =
Nh(f). We have

Nh(f) =
∞∑

j=0

Kj h
j ⇒ N−h(f) =

∑
j=0∞

(−1)jKj h
j

such that

Nh(f) =
1
2
(Nh(f) +N−h(f)) =

∞∑
m=0

K2m h2m.

In particular we can consider the h0- and h2-contribution by including the h3- and h5-terms respectively
in the Tayler series around h = 0 for each f(x± h), f(x± 2h). We get

1
2
(f(x+ 2h)− f(x− 2h)) = 2hf ′(x) +

4
3
h3f (3)(x) +

4
15
h5f (5)(x) + · · ·

and
f(x+ h)− f(x− h) = 2hf ′(x) +

1
3
h3f (3)(x) +

1
60
h5f (5)(x) + · · ·

If we take the difference between these two and divide by h3, we find that the coefficient in front of the
h0 term is K0 = f (3)(x), while

K2 =
1
4
f (5)(x).
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c) Somebody has utilized formula (1) on a smooth function f(x) which yielded the following
table for a given x

h 0.32 0.16 0.08
Nh(f)(x) −0.250118 −0.253512 −0.253933

Use this information to make a better (optimal) approximation to f (3)(x).

Answer: The keyword here is Richardson extrapolation. Since we have an even expansion of the error,
we can use a recursion formula just like in Romberg intergration, say

Qk,j = Qk,j−1 +
Qk,j−1 −Qk−1,j−1

4j−1 − 1
.

where we put Qk,1 = Nhk
(f) with hk = h1

2k−1 . In our case we have h1 = 0.32. The table reads

−0.250118
−0.253512 −0.254643
−0.253933 −0.254073 −0.254035

i.e the answer is −0.254035.

Problem 3 We here consider the linear system of two ordinary differential equations given
by

y′ = Ay, where A =

[
−2 1
−1 −2

]
, y(0) = y0 =

[
u0

v0

]
. (2)

a) Let h = 0.4, u0 = v0 = 1 and apply one step with Euler’s method to this problem.

Answer: We get u1 = 0.6 and v1 = −0.2.

We now, as usual, let the 2-norm of a vector y = [u, v]T be defined by

‖y‖2 =
√
u2 + v2.

It is easy to show that for the exact solution of (2) we have

‖y(x)‖2 = e−2x ‖y0‖2, for all y0.

b) Show that if y1, y2, y3, . . . are the approximations obtained by applying Euler’s method
with step size h to (2), we have

‖yn+1‖2 =
√

5h2 − 4h+ 1 ‖yn‖2.

Find the largest possible step size H such that for all 0 < h < H we have yn → ~0 when
n→∞.
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Answer: It is smart to write A = −2I +S where I is the identify matrix and S is the skew symmetric
matrix

S =
[

0 1
−1 0

]
such that STS = I and xTSx = 0 for all x ∈ R2.

Using the properties of the matrix S, we can now calculate (with yn+1 = (I + hA)yn from Euler’s
method)

‖yn+1‖22 = yT
n+1yn+1 = yT

n ((1− 2h)I + hS)T ((1− 2h)I + hS) yn = ((1− 2h)2 + h2)yT
n yn.

The given equality now follows by taking the square root on each side. We now seek the largest possible
interval E = (0, H) such that f(h) = 5h2 − 4h+ 1 < 1 for h ∈ E.

5h2 − 4h+ 1 < 1 ⇒ h(5h− 4) < 0 ⇒ 0 < h < H = 0.8

For h ∈ (0, 0.8) we have ‖yn+1‖2 = α(h)‖yn‖2 with α(h) < 1. Hence ‖yn‖2 = α(h)n‖y0‖2 → 0 when
n → ∞. Note that for all h > H the numerical solution grows to infinity for increasing n (obviously
disregarding the null solution).


