EKSAMEN I NUMERISK MATEMATIKK (TMA4215)

Mandag 8. desember 2008
FASIT

Oppgave 1 The table of divided differences becomes

The interpolation polynomial becomes

$$
p(x)=1.0(x-0.5) x(x+1)+1.5 x(x+1)-0.75(x+1)+0.25=x^{3}+2.00 x^{2}+0.25 x-0.5
$$

You could have used Lagrange polynomials as well.

Oppgave 2 With $f(x)=\sqrt{x} \sin (x)$ and $H=b-a=1$ we get

$$
\begin{aligned}
R_{11} & =\frac{1}{2}(f(0)+f(1))=0.4207354924 \\
R_{21} & =\frac{1}{2} R_{11}+\frac{1}{2} f(0.5)=0.3798702709 \\
R_{31} & =\frac{1}{2} R_{21}+\frac{1}{4}(f(0.25)+f(0.75))=0.3684397509
\end{aligned}
$$

The Romberg table becomes

$$
\begin{array}{lll}
0.4207354924 & & \\
0.3798702709 & 0.3662485304 & \\
0.3684397509 & 0.3646295776 & 0.3645216474
\end{array}
$$

The Romberg algorithm depends on a sufficient amount of terms in the Euler-Maclaurin formula, that is f has to be sufficiently differentiable on $[a, b]$. We know that $\sin \in C^{\infty}[0,1]$ and Romberg behaves as expected in this case. With $f=\sqrt{x} \sin (x)$, we get $f^{\prime}(x)=(\sin (x)+2 \cos (x)) /(2 \sqrt{x})$ which is bounded in $[0,1]$. But $f^{\prime \prime}(x)=\left(x \cos (x)-x^{2} \sin (x)-\sin (x) / 4\right) /(x \sqrt{x})$ which is certainly not bounded when $x=0$. Thus, we can not expect the Romberg algorithm to work at all.

Oppgave 3

a)

$$
\begin{aligned}
& \phi_{0}=1, \quad\left\langle x \phi_{0}, \phi_{0}\right\rangle=\frac{2}{3}, \quad\left\langle\phi_{0}, \phi_{0}\right\rangle=2, \quad B_{1}=\frac{1}{3}, \\
& \phi_{1}=x-\frac{1}{3}, \quad\left\langle x \phi_{1}, \phi_{1}\right\rangle=\frac{88}{945}, \quad\left\langle\phi_{1}, \phi_{1}\right\rangle=\frac{8}{45}, \quad B_{2}=\frac{11}{21}, \quad C_{2}=\frac{4}{45} \\
& \phi_{2}=\left(x-\frac{11}{21}\right)\left(x-\frac{1}{3}\right)-\frac{4}{45}=x^{2}-\frac{6}{7} x+\frac{3}{35} \text {. }
\end{aligned}
$$

b) As nodes, we use the zeros of ϕ_{2}, that is

$$
x_{1}=\frac{3}{7}-\frac{2}{35} \sqrt{30}, \quad x_{2}=\frac{3}{7}+\frac{2}{35} \sqrt{30}
$$

The weights are given as

$$
A_{1}=\int_{0}^{1} \frac{1}{\sqrt{x}} \frac{x-x_{2}}{x_{1}-x_{2}} d x=1+\frac{\sqrt{30}}{18}, \quad A_{2}=\int_{0}^{1} \frac{1}{\sqrt{x}} \frac{x-x_{1}}{x_{2}-x_{1}} d x=1-\frac{\sqrt{30}}{18}
$$

With $f(x)=x \sin (x)$ we get

$$
A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)=0.365849
$$

Oppgave 4

a) Let $x_{1}=y$ and $x_{2}=y^{\prime}$. The ODE is then

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{2} & x_{1}(0)=1.0 \\
x_{2}^{\prime}=x_{1} x_{2} & x_{2}(0)=0.5
\end{array}
$$

Let $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ and $\mathbf{x}_{0}=[1.0,0.5]^{T}$. One step with stepsize $h=0.1$ is given by

$$
\begin{array}{ll}
\mathbf{k}_{1}=\mathbf{f}\left(\mathbf{x}_{0}\right)=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right] & \mathbf{x}_{0}+\frac{h}{2} \mathbf{k}_{1}=\left[\begin{array}{c}
1.025 \\
0.525
\end{array}\right] \\
\mathbf{k}_{2}=\mathbf{f}\left(\mathbf{x}_{0}+\frac{h}{2} \mathbf{k}_{1}\right)=\left[\begin{array}{c}
0.525 \\
0.5381
\end{array}\right] \\
\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{0}+h \mathbf{k}_{2}=\left[\begin{array}{c}
1.0525 \\
0.5538
\end{array}\right]
\end{array}
$$

So $y(0.1) \approx 1.0525$ and $y^{\prime}(0.1) \approx 0.5538$.
b) The order conditions becomes

$$
\begin{aligned}
b_{1}+b_{2}+b_{3} & =1 \\
b_{2} \frac{1}{2}+b_{3} & =\frac{1}{2} \\
b_{2} \frac{1}{4}+b_{3} & =\frac{1}{3} \\
b_{3} a_{32} \frac{1}{2} & =\frac{1}{6} .
\end{aligned}
$$

The solution is $b_{1}=b_{3}=1 / 6, b_{2}=2 / 3, a_{32}=2, a_{31}=-1$.
c) Combined with the results from point a) we get

$$
\mathbf{x}_{0}+h\left(-\mathbf{k}_{1}+2 \mathbf{k}_{2}\right)=\left[\begin{array}{c}
1.055 \\
0.5576
\end{array}\right], \quad \mathbf{k}_{3}=\mathbf{f}\left(\mathbf{x}_{0}+h\left(-\mathbf{k}_{1}+2 \mathbf{k}_{2}\right)\right)=\left[\begin{array}{c}
0.5576 \\
0.5583
\end{array}\right]
$$

- The error estimate is given by

$$
l e_{1}=h \sum_{i=1}^{3}\left(\tilde{b}_{i}-b_{i}\right) \mathbf{k}_{i}=\left[\begin{array}{c}
1.27 \cdot 10^{-4} \\
2.00 \cdot 10^{-4}
\end{array}\right]
$$

so $\|l e\|_{\infty}=2.00 \cdot 10^{-4}$.

- The step is accepted.
- The stepsize is adjusted by the formula ($\mathrm{p}=2$)

$$
h_{\text {new }}=P \cdot \sqrt[p+1]{\frac{T o l}{\left\|l e_{1}\right\|_{\infty}}} h=0.128
$$

Oppgave 5

a) On matrix form, this is

$$
\left[\begin{array}{cccc}
R_{1}+R_{5}+R_{6} & -R_{5} & -R_{6} & 0 \\
-R_{5} & R_{2}+R_{5}+R_{7}+R_{8} & -R_{7} & -R_{8} \\
-R_{6} & -R_{7} & R_{3}+R_{6}+R_{7}+R_{9} & -R_{9} \\
0 & -R_{8} & -R_{9} & R_{4}+R_{8}+R_{9}
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
I_{3} \\
I_{4}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]
$$

The matrix is strictly diagonally dominant.
b)

$$
\begin{aligned}
40 I_{1}-15 I_{2}-15 I_{3} & =6 \\
-15 I_{1}+55 I_{2}-15 I_{3}-15 I_{4} & =0 \\
-15 I_{1}-15 I_{2}+70 I_{3}-15 I_{4} & =0 \\
-15 I_{2}-15 I_{3}+55 I_{4} & =6
\end{aligned}
$$

The Gauss-Seidel iterations results in

$$
I^{(0)}=\left[\begin{array}{c}
0.6 \\
0.0 \\
0.0 \\
0.24
\end{array}\right], \quad I^{(1)}=\left[\begin{array}{c}
0.15000 \\
0.10636 \\
0.10636 \\
0.16711
\end{array}\right], \quad I^{(2)}=\left[\begin{array}{c}
0.22977 \\
0.13725 \\
0.11446 \\
0.17774
\end{array}\right]
$$

