SOLUTION TO THE EXAM IN NUMERICAL MATHEMATICS (TMA4215)

December 19, 2009

Problem 1 Let $f(x)=x^{2} \ln x$, so that

$$
S(0.25)=\frac{0.25}{3}(f(1.0)+4 f(1.25)+2 f(1.5)+4 f(1.75)+f(2.0))=1.070594
$$

The error is given by

$$
\int_{1}^{2} x^{2} \ln x d x-S(h)=-\frac{(b-a)}{180} h^{4} f^{(4)}(\xi), \quad \xi \in(1,2)
$$

So, since $f^{(4)}(x)=-2 / x^{2}$, we get $\left|f^{(4)}(\xi)\right| \leq 2$, and the error bound becomes

$$
\left|\int_{1}^{2} x^{2} \ln x d x-S(0.25)\right| \leq 4.34 \cdot 10^{-5}
$$

Problem 2

a) By straightforward computations we get

$$
\begin{aligned}
& \mathbf{x}^{(1)}=[1.0,1.0,1.0,1.0]^{T} \\
& \mathbf{x}^{(2)}=[0.866670 .93333,0.92500,0.93333]^{T}
\end{aligned}
$$

b) The iterative scheme can be rewritten as

$$
\mathbf{x}^{(k+1}=G \mathbf{x}^{(k)}+\mathbf{c}, \quad G=N^{-1} P, \quad \mathbf{c}=N^{-1} \mathbf{b}
$$

so that

$$
\left.\| \mathbf{x}^{(k+1}\right)-\mathbf{x}\|\leq\| G\| \| \mathbf{x}^{(k)}-\mathbf{x} \|
$$

Now

$$
N^{-1}=\left[\begin{array}{cccc}
1 & -1 / 3 & 0 & 0 \\
0 & 1 / 3 & 0 & 0 \\
0 & 0 & 1 / 4 & 0 \\
0 & 0 & 0 & 1 / 3
\end{array}\right] \quad \text { so that } \quad G=\left[\begin{array}{cccc}
1 / 30 & 0 & -1 / 15 & -1 / 10 \\
-1 / 30 & 0 & -1 / 30 & 0 \\
-1 / 40 & -1 / 40 & 0 & -1 / 40 \\
-1 / 30 & 0 & -1 / 30 & 0
\end{array}\right]
$$

and $\|G\|_{\infty}=0.2$, proving the result in max-norm.
We also have the result

$$
\left\|\mathbf{x}^{(k)}-\mathbf{x}\right\|_{\infty} \leq \frac{\|G\|_{\infty}}{1-\|G\|_{\infty}}\left\|\mathbf{x}^{(k)}-\mathbf{x}^{(\mathbf{k}-\mathbf{1})}\right\|_{\infty} \leq \frac{\|G\|_{\infty}^{k}}{1-\|G\|_{\infty}}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\|_{\infty}
$$

so $\left\|\mathbf{x}^{(2)}-\mathbf{x}\right\|_{\infty} \leq 0.03333$. If you use the last expression, the bound will be 0.05 .

Problem 3

a) We get

$$
p(x)=-\frac{15}{8} x^{2}+\frac{19}{8} x
$$

b) The polynomial $q(x)$ has to be of the form

$$
q(x)=p(x)+\alpha x(x-0.6)(x-1)
$$

The condition $q^{\prime}(0.6)=0.5$ gives $\alpha=-25 / 16$, so that

$$
q(x)=-\frac{25}{16} x^{3}+\frac{5}{8} x^{2}+\frac{23}{16} x
$$

c) The expression is obviously correct for the nodes $x=0,0.6$ and $x=1$. Following the idea of the proof for interpolation errors of the ordinary interpolation polynomial, choose an x different from the nodes, keep it fixed, and define a function $\phi(t)$ by

$$
\phi(t)=f(t)-p(t)-\lambda w(t), \quad \lambda=\frac{f(x)-q(x)}{w(x)}
$$

and $w(x)$ is given in the exam set. $\phi(t)=0$ at 4 distinct points, the nodes and x. But $\phi^{\prime}(t)$ has at least 4 zeros as well, 3 in the intervals between the zeros of $\phi(t)$, and one in $t=0.6$. So, by repeated use of Rolle's theorem, we get that $\phi^{(4)}(t)=0$ at least once in the interval $(0,1)$, this is the point called ξ_{x}. So for an arbitrary x we get

$$
0=\phi^{(4)}\left(\xi_{x}\right)=f^{(4)}\left(\xi_{x}\right)-0-\frac{f(x)-q(x)}{w(x)} \cdot 4!
$$

which gives the expected result. The error expression is valid as long as $f \in C^{4}[0,1]$.

Problem 4

a) Using $v=y, w=y^{\prime}$ the first order system is

$$
\begin{array}{rlrl}
v^{\prime} & =w & v(0) & =y_{0}, \\
w^{\prime} & =f(t, v), & w(0) & =y^{\prime}(0) .
\end{array}
$$

Two step with Eulers method becomes

$$
\begin{aligned}
v_{n} & =v_{n-1}+h w_{n-1} & v_{n+1} & =v_{n}+h w_{n} \\
w_{n} & =w_{n-1}+h f\left(t_{n-1}, v_{n-1}\right) & w_{n+1} & =w_{n}+h f\left(t_{n}, v_{n}\right)
\end{aligned}
$$

The upper right expression for v_{n+1} can then be written as

$$
v_{n+1}=v_{n}+\overbrace{\left(v_{n}-v_{n-1}\right)}^{h w_{n-1}}+h^{2} f\left(t_{n-1}, y_{n-1}\right) .
$$

Using $v_{n}=y_{n}$, we get the expected result.
In this case the local truncation error is given by

$$
h^{2} \tau_{n+1}(h)=y\left(t_{n+1}\right)-2 y\left(t_{n}\right)+y\left(t_{n-1}\right)-h^{2} y^{\prime \prime}\left(t_{n-1}\right) .
$$

The Taylor expansion around t_{n-1} (you may choose another point) becomes

$$
\begin{aligned}
h^{2} \tau_{n+1}(h) & =(1-2+1) y\left(t_{n-1}\right)+h(2-2) y^{\prime}\left(t_{n-1}\right)+\frac{h^{2}}{2}(4-2) y^{\prime \prime}\left(t_{n-1}\right) \\
& +\frac{h^{3}}{6}(8-2) y^{\prime \prime \prime}\left(t_{n-1}\right)+\cdots-h^{2} y^{\prime \prime}\left(t_{n-1}\right) \\
& =h^{3} y^{\prime \prime \prime}\left(t_{n-1}\right)+\cdots .
\end{aligned}
$$

The method is consistent of order 1. The characteristic polynomial becomes $\rho(r)=$ $r^{2}-2 r+1=(r-1)^{2}$, so it has a double root at $r-1$, the stability condition is then satisfied.
The method is convergent of order 1.
b) Follow the same idea as when developing the Adams-Bashforth methods. The Newton backward polynomial form is

$$
p(t)=p\left(t_{n}+s h\right)=f_{n}+s \nabla f_{n}+\frac{s(s+1)}{2} \nabla^{2} f,
$$

with $\nabla f_{n}=f_{n}-f_{n-1}$ and $\nabla^{2} f_{n}=f_{n}-2 f_{n-1}+f_{n-2}$. From the formula in the appendix, using $f(t, y(t)) \approx p(t)$ we get

$$
\begin{aligned}
y\left(t_{n+1}\right)-2 y_{t_{n}}+y\left(t_{n-1}\right) & \approx \int_{t_{n}}^{t_{n+1}}\left(t_{n}+h-t\right) p(t) d t-\int_{t_{n-1}}^{t_{n}}\left(t_{n}-h+t\right) p(t) d t \\
& =h^{2}\left(\int_{0}^{1}(1-s) p\left(t_{n}+s h\right) d s+\int_{-1}^{0}(-1-s) p\left(t_{n}+s h\right) d s\right) \\
& =h^{2}\left(\sigma_{0} f_{n}+\sigma_{1} \nabla f_{n}+\sigma_{2} \nabla^{2} f_{n}\right),
\end{aligned}
$$

with

$$
\sigma_{0}=\int_{0}^{1}(1-s) d s+\int_{-1}^{0}(1+s) d s=1, \quad \sigma_{1}=\int_{0}^{1} s(1-s) d s+\int_{-1}^{0} s(1+s) d s=0
$$

and

$$
\sigma_{2}=\int_{0}^{1} \frac{s(s+1)}{2}(1-s) d s+\int_{-1}^{0} \frac{s(s+1)}{2}(1+s) d s=\frac{1}{12}
$$

So, our method becomes

$$
y_{n+1}-2 y_{n}+y_{n-1}=h^{2}\left(f_{n}+\frac{1}{12} \nabla^{2} f_{n}\right)=h^{2}\left(\frac{13}{12} f\left(t_{n}, y_{n}\right)-\frac{1}{6} f\left(t_{n-1}, y_{n-1}\right)+\frac{1}{12} f\left(t_{n-2}, y_{n-2}\right)\right)
$$

The stability properties of the method is as in a), and the local truncation error becomes

$$
\left.h^{2} \tau_{n+1}(h)=\frac{1}{12} h^{5} y^{(5)}\left(t_{n-2}\right)\right)+\cdots
$$

The method is convergent of order 4.

