EXAM IN NUMERICAL MATHEMATICS (TMA4215)

10. December 2006

Time: 09:00-13:00, Grades due: 15.08.2006
Permitted aids: Cathegory B, all written aids permitted.
Simple calculator with empty memory allowed.

Problem 1 Calculate

$$
\int_{-1}^{1} \frac{e^{x} d x}{\sqrt{1-x^{2}}}
$$

with atleast 4 significant digits (note the given formulas).

Problem 2 The Van der Pol oscillator can be modelled by the initial value problem

$$
\begin{equation*}
u^{\prime \prime}+\alpha\left(u^{2}-1\right) u^{\prime}+u=0, \quad u(0)=u_{0}, u^{\prime}(0)=v_{0} \tag{1}
\end{equation*}
$$

The method backward Euler (reluE) for the problem $y^{\prime}=f(y)$ is given as

$$
\begin{equation*}
y_{m+1}=y_{m}+h f\left(y_{m+1}\right) \tag{2}
\end{equation*}
$$

where h is the step size.
a) Show that (2) applied to (1) leads to the following equation to be solved (with respect to u) for $u_{1} \approx u(h)$:

$$
\begin{equation*}
\alpha h u^{3}-\alpha h u_{0} u^{2}+\left(1-\alpha h+h^{2}\right) u-u_{0}(1-h \alpha)-h v_{0}=0 \tag{3}
\end{equation*}
$$

b) Now let $\alpha=5, h=0.1, u_{0}=2, v_{0}=0$, and find u_{1} with atleast 6 significant digits.
c) Find a polynomial $p(x)$ of degree at most 3 which satisfies

$$
p(0)=2, p^{\prime}(0)=0, p(h)=u^{*}, p^{\prime}(h)=\left(u^{*}-2\right) / h,
$$

where h and u^{*} are arbitrary parameters. Then use these to approximate $u(0.05)$ for the Van der Pol oscillator with u_{0}, v_{0} and α as in the previous task.

Problem 3 The tip of a robotic arm moves along a path in the $x y$-plane which can be described by a parabola-like $\operatorname{graph}(x, f(x))$, that is $f(x)$ can be approximated well by a 2 . degree polynomial $p(x)$. The following have been observed.

x_{m}	-1.0	-0.6	-0.2	0.2	0.6	1.0
y_{m}	$-8.7065 \mathrm{e}-03$	$3.2370 \mathrm{e}-01$	$9.4428 \mathrm{e}-01$	1.2189	1.1431	1.0584

You can assume that the x-values are exact, while there is some uncertainty in the y-values.
a) Find $p(x) \in \Pi_{2}$ which minimizes the sum of squares

$$
E[p]=\sum_{m=1}^{6}\left(y_{m}-p\left(x_{m}\right)\right)^{2}
$$

b) We suspect that two of the data points are rather inexact, namely the second ($-0.6,3.2370 \mathrm{e}-01$), and the fourth $(0.2,1.2189)$. We want to give these a somewhat reduced weight in the sum of square, which leads us to defining

$$
E_{w}[p]=\sum_{m=1}^{6} w_{m}\left(y_{m}-p\left(x_{m}\right)\right)^{2} .
$$

We now let $w_{1}=w_{3}=w_{5}=w_{6}=1$ and $w_{2}=w_{4}=\frac{1}{2}$. We can define an inner product on \mathbf{R}^{6} by

$$
\langle u, v\rangle_{w}=\sum_{m=1}^{6} w_{m} u_{m} v_{m}
$$

To a polynomial $\phi \in \Pi_{2}$ we associate the vector $\bar{\phi}=\left[\phi\left(x_{1}\right), \ldots, \phi\left(x_{6}\right)\right]^{T} \in \mathbf{R}^{6}$. It turns out that the three polynomials

$$
\phi_{0}(x) \equiv 1, \quad \phi_{1}(x)=x-\frac{1}{25}, \quad \phi_{2}(x)=x^{2}-\frac{13}{25}
$$

satisfies $\left\langle\bar{\phi}_{k}, \bar{\phi}_{\ell}\right\rangle_{w}=0$ when $k \neq \ell$. Use this (without proving it) to find $q \in \Pi_{2}$ which minimizes $E_{w}[q]$.

Some useful formulas

1. Chebyshev-quadrature

$$
\begin{gathered}
I(f)=\int_{-1}^{1} \frac{f(x) d x}{\sqrt{1-x^{2}}} \approx Q_{n}(f)=\sum_{k=1}^{n} c_{n, k} f\left(x_{n, k}\right) \\
c_{n, k}=\frac{\pi}{n} \\
x_{n, k}=\cos \frac{2 k-2 n-1}{2 n} \pi
\end{gathered}, \quad k=1, \ldots, n .
$$

2. Error in Chebyshev-quadrature

$$
I(f)-Q_{n}(f)=\frac{\pi}{(2 n)!2^{2 n-1}} f^{(2 n)}(\xi), \quad-1<\xi<1
$$

