EXAM IN NUMERICAL MATHEMATICS (TMA4215)

Thursdag 14. Desember 2006
Time: 15:00-19:00, Grades due: 04.01.2007
Permitted aids: Cathegory B, all written aids permitted.
Simple calculator with empty memory allowed.

Problem 1 You are given the function

$$
f(x)=\frac{\cos x}{\cosh x} \quad\left(\text { where } \cosh x=\frac{\mathrm{e}^{x}+e^{-x}}{2}\right)
$$

In the rest of this task you can assume that for all $m \in \mathbb{N}$ we have

$$
\max _{0 \leq x \leq 1}\left|f^{(m)}(x)\right| \leq M_{m} \quad \text { der } M_{m}=m!\cdot 3 \cdot 1.55^{-m}
$$

Every positive integer n define $n+1$ abscissa (Chebyshev-points relative to $[0,1]$)

$$
x_{n, k}=\sin ^{2} \frac{(2 k+1) \pi}{4(n+1)}, \quad k=0, \ldots, n
$$

a) Find the polynomial of degree 2 which interpolates $f(x)$ in the abscissas $x_{2,0}, x_{2,1}, x_{2,2}$. State your answer on the form $p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$.
b) Now assume that we want to make sure that the maximal interpolation error in the interval $[0,1]$ is at most 10^{-6} using the abscissas we found above. Find the smallest possible value of n which makes this possible.
c) Calculate the value of the integral

$$
\int_{0}^{1} \frac{\cos x}{\cosh x} \mathrm{~d} x
$$

with an error which is guaranteed to be less than 10^{-4}. Justify your answer and your solution strategy.

Problem 2 In this exercise we study the formula

$$
\begin{equation*}
N_{h}(f)(x)=\frac{1}{h^{3}}\left(-\frac{1}{2} f(x-2 h)+f(x-h)-f(x+h)+\frac{1}{2} f(x+2 h)\right) \tag{1}
\end{equation*}
$$

used to approximate $f^{(3)}(x)$ (the third derivative of f) for a smooth function f.
a) Test the formula on $f(x)=\sin x$ with $x=0$ and $h=0.1$.
b) Show that

$$
N_{h}(f)(x)=f^{(3)}(x)+K_{2} h^{2}+K_{4} h^{4}+\cdots,
$$

that is, only even powers of h. Also find an expression for K_{2}.
c) Somebody has utilized formula (1) on a smooth function $f(x)$ which yielded the following table for a given x

h	0.32	0.16	0.08
$N_{h}(f)(x)$	-0.250118	-0.253512	-0.253933

Use this information to make a better (optimal) approximation to $f^{(3)}(x)$.

Problem 3 We here consider the linear system of two ordinary differential equations given by

$$
y^{\prime}=A y, \quad \text { where } \quad A=\left[\begin{array}{rr}
-2 & 1 \tag{2}\\
-1 & -2
\end{array}\right], \quad y(0)=y_{0}=\left[\begin{array}{c}
u_{0} \\
v_{0}
\end{array}\right] .
$$

a) Let $h=0.4, u_{0}=v_{0}=1$ and apply one step with Euler's method to this problem.

We now, as usual, let the 2-norm of a vector $y=[u, v]^{T}$ be defined by

$$
\|y\|_{2}=\sqrt{u^{2}+v^{2}}
$$

It is easy to show that for the exact solution of (2) we have

$$
\|y(x)\|_{2}=\mathrm{e}^{-2 x}\left\|y_{0}\right\|_{2}, \quad \text { for all } y_{0} .
$$

b) Show that if $y_{1}, y_{2}, y_{3}, \ldots$ are the approximations obtained by applying Euler's method with step size h to (2), we have

$$
\left\|y_{n+1}\right\|_{2}=\sqrt{5 h^{2}-4 h+1}\left\|y_{n}\right\|_{2} .
$$

Find the largest possible step size H such that for all $0<h<H$ we have $y_{n} \rightarrow \overrightarrow{0}$ when $n \rightarrow \infty$.

